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Abstract. Security configuration of standard systems is a tedious and
error prone task. Doing this for WSN is even more complex due to the
scarce resources of the sensor nodes. In order to simplify this task we
propose a middleware architecture as well as a configuration tool. The
main idea is that the configuration tool selects security providing mod-
ules such as appropriate cipher means. The choice is based on a detailed
description of security needs of the application under development as
well as on the description of the available security modules and sensor
nodes. The middleware architecture supports configuration before and
after deployment of the sensor nodes. It consist of an essential core that
provides configuration features and an additional layer in which the se-
curity modules are clustered.

1 Introduction

It is obvious that security is an essential need in ubiquitous wireless computing
and there are plenty of means that promise to secure Wireless Sensor Networks
(WSNs). In WSNs obvious parameters like security strength are overshadowed
by network structure, the number of available base stations, requirements in
response times, frequency of security operations and especially by the energy
consumption of cryptographic operations. All these parameters must be con-
sidered if security is supposed to be incorporated in the WSN. This is a very
challenging task even for security experts, and programming of a WSN is already
a complex task by itself.

Our approach to reduce complexity of the realization of an appropriate secu-
rity level for a given WSN application is to provide a configurable and adaptive
security middleware. The configuration of an initial set of security modules is
done by our configuration kit (configKIT) before deployment of the application.
With respect to security issues, the application programmer has to specify only
which security functionality, e.g. data secrecy and authentication is needed by
the application. In addition she has to provide some information on the sen-
sor node configuration, e.g. processor, memory size etc. Based on this data the
configKIT selects the appropriate security modules. The security modules come



with a self description concerning functionality and required resources for ex-
ample. These modules are provided by the UbiSec&Sens project [16] into which
our activities are also embedded. Adaptability ensures that security modules
can be exchanged after deployment, e.g. if application needs have changed or if
vulnerabilities of a certain module have been detected which require an update.
This functionality is achieved by our modular architecture which separates core
functionality needed for adaptability support from pure security functionalities.

The rest of this paper is structured as follows. Section 2 provides a short
state of the art. The configuration tool is introduced in section 3. The following
section discusses our middleware architecture. The paper concludes with a short
summary and an outlook on further research steps.

2 State of the Art

Wireless sensor networks are mainly used to gather data about a certain envi-
ronment, see for example [13]. Due to this focus also research in the middleware
area has somewhat concentrated on supporting data storage and retrieval issues
in WSNs. Some prominent approaches are tinyDB [10], Cougar [18] and Hood
[17] to name just a few.

Some work towards flexible middleware for WSNs has already been done.
These approaches try to provide application independent support to applications
but are mainly focusing on communication issues in one form or another. In [19]
authors introduce the concept of reconfigurability for middleware in pervasive
computing. Here the major part, if not all components, of the middleware is
located at a PDA device and the task of the middleware is merely discovery
provision of available data. Authors of [15] propose an application independent
scheme for defining groups of sensors to provide easy adaptability of a WSN to
new applications. Here part of the adaptation logic is placed at the sensor nodes.
A similar approach exploiting roles of sensor nodes is proposed in [9].

Our middleware approach differs from those cited above by that we are fo-
cusing on a very specific functionality, i.e. security instead of trying to provide
a communication or programming abstraction. In our approach flexibility is ad-
dressing support of a wide range of applications and individual support of the
security needs of each application. I.e. we are trying to provide a tailor-made
security solution for each application, and provide means to update the security
modules during the runtime if necessary. In order to achieve this goal we are
working towards a middleware compiler which selects security modules based on
application and sensor node requirements and constraints respectively. In this
area some work has been done, which did not focus on WSN and security is-
sues but aims at a similar goal, i.e. providing tool support for development of
a certain middleware. Most of those approaches are based on model driven ar-
chitecture (MDA) [2]. The tool sets Cadena [7], VEST [14] and CoSMIC [1] are
MDA based and try to support development of platforms for embedded systems.
By that they provide functionality similar to our approach, the difference is that
we are focusing on security and do not use MDA but defined our platform ar-



chitecture independently of any formal model. In addition only VEST supports
the modelling of security aspects.

In [5] the authors discuss the integration of security aspects into a formal
method based development of networked embedded systems. The focus of the
security analysis language (SAL) is merely on information flow between net-
worked entities. By that it might be a way to model security requirements of
applications residing on top of our security modules and to verify whether or
not our middleware compiler selected the correct modules.

3 Middleware Security Compiler

It is the goal to have a middleware that provides security functionality in a very
flexible and adaptable way.

The security provided by our toolbox can be tailor-made on a per application
basis and even be adapted during the life cycle of a certain application. This
level of flexibility is achieved by a modular middleware architecture and by
introducing the concept of a middleware compiler.

3.1 Overview of the Compiler Architecture

Since the gravity center of this work is security for WSN as such and not for a
specialised application domain or even a single application, several solutions for
each security service are required to be capable to provide security for a wide
range of applications. This means that in order to provide flexibility of the choice
there is a need for multiple modules that provide a specific functionality—service
but differentiated with respect to security parameters, code size, etc.

The selection of the suitable security modules is done by our middleware
compiler. In order to generate a suitable set of security modules for a certain ap-
plication reasonable constraints need to be defined in advance. These constraints
are on one hand due to the limitations of wireless sensor nodes and on the other
hand imposed by the security that the application under development requires.
The hardware driven constraints are for example processing power and available
energy to name just a few. Application dependent constraints are lifetime of the
overall network, security features like secrecy of measured data or similar. In
order to define the relevant constraints an XML based description language for
sensor nodes and application requirements is under development. Also the role
of a specific sensor, if static or default, influences its software set-up. The sensor
node description provides information concerning the hardware set-up of a sen-
sor node plus relevant information of its software configuration such as operating
system used and already allocated memory.

In addition to the description of the above mentioned constraints the secu-
rity modules provide a self description. This description provides information
concerning the functionality of the module, and the needed resources—memory
footprint and processing power. If a module needs other additional modules its
description also contains information on potential dependencies. For example,



an cipher mechanisms may require that a secure random number generator is
also deployed.

Additionally, since the resources of a sensor node are usually constrained we
suggest that every functionality that might be used by multiple modules is also
present as a module in order to avoid code redundancy.

Fig. 1. The Middleware Compiler: the appropriate modules are selected based on ap-
plication requirements and sensor node constraints.

Figure 1 illustrates the idea of the middleware compiler. The result of a
successful compiler run is an instance of the secure middleware—the right hand
side of the figure.

3.2 Compiler Operation

Our compiler approach requires the definition of abstract and concrete APIs
between security modules. Using these interfaces the selection of the suitable
security modules can be done by our middleware compiler. This compiler requires
in addition the following information:

– required functions
– available modules
– constraints concerning performance and security

In following, these points are explained referring to an example. The example
function is the authentication of another node.

Required functions It describes the needed functionality. In this example it
is the authentication. The description does not contain any further specification
details.



Fig. 2. Exemplary fragment of a dependency graph for asymmetric cipher mechanisms.
Green boxes contain real code while bright boxes are logical classes—interfaces.

Available modules The description of available modules can be considered as a
kind of database that contains every security module, its dependencies, interface
description, security parameters, code size, etc. It is the notion that every module
that is available has such a description. Based on these single module descriptions
the compiler generates a network of modules, with dependencies and available
implementations. Figure 2 shows an example of such a dependency graph. It is a
part of the complete structure for our example, and as shown, there is a choice of
the underlying mechanisms used by the authentication. It can be either ECEG
(Elliptic Curve ElGamal) or RSA. If ECEG is chosen, an ECC (Elliptic Curve
Cryptography) implementation and a Random Number Generator are required.
For both of them diverse implementations are available.

Constraints concerning performance and security Based on the graph of
available modules and the required functions the compiler determines possible
configurations (i.e. sets of modules) that do not have open dependencies and pro-
vide every needed function. Indeed, some of these configurations will not meet
the requirements of the system, either because hardware parameters are not met
or due to wrong security properties. The description of such constraints helps to
filter out configurations that do not fulfil the requirements. For instance, in our
authentication example, there might be a constraint saying that the code size for
the authentication functions must be less than 2 kB. In such a case, every con-
figuration where the code size is more than 2 kB is withdrawn. Another possible
constraint is security strength. If the example needs very strong authentication,
all configurations based on weak cryptography implementations are withdrawn.



Final Evaluation At this point a set of possible configurations that meet every
constraint, should be picked out. It is considerable that now the compiler evalu-
ates extended parameters like energy consumption, total code size, performance,
security implications and the like and chooses the best configuration or presents
the results to the developer who chooses the best set-up.

4 Flexible Security Middleware Architecture

4.1 Overview

Starting on the highest level, there are two main classes of participants, i.e. sensor
nodes and Configuration Centers. Figure 3 depicts our intended middleware
architecture for both these classes. A Configuration Center runs applications
that support the management of the WSN and allow access to data from specific
sensors and aggregated data, and also to receive alarms. There may be multiple
instances of Configuration Center, thus from now on the term Configuration
Center refers to the class not to a single instance, if not otherwise stated.

Fig. 3. Our middleware architecture: Configuration Center on the left and sensor node
on the right hand side

Our middleware architecture distinguishes between three classes of compo-
nents, where each component consist of one or more modules. These classes are:

– sensor node abstraction layer
– middleware core
– security services



The sensor node abstraction layer is the only operating system and hardware
dependent component. It has to be adapted individually for each OS/hardware
combination that shall be supported.

The middleware core consists of modules that are necessary to guarantee
proper functionality of the other modules and those that are needed on all devices
of a system based on our approach.

Security services are modules that contain the actual security functions, i.e.
cryptographic means, security protocols and the like. The security services may
use each other what implies a logic differentiation between basic services and
complex services.

The general middleware architecture is mainly independent of the partici-
pant type, i.e. the deviations between sensor nodes and Configuration Centers
are minor. The major differences concern the presence of the sensor node abstrac-
tion layer that is needed at sensor nodes, and the inclusion of the Middleware
Compiler that is necessary only at the Configuration Center.

The concrete instantiation of the middleware, i.e. the modules deployed at
the sensor nodes and at the Configuration Centers depends on:

– the currently running application
– the current role of the sensor node
– sensor node capabilities

4.2 Core Components

State Management Module (SMM) The SMM monitors the sensor node
and maintains its state. By that it can trigger a code update for example if the
sensor node reaches the management state, which might be caused by expiration
of timers or by external triggers such as detection of malicious actions.

Each sensor node can be in one of the following four states (see Figure 4):

– M0 off-the-shelf state: the node is equipped with basic functions needed for
the initialization process. The initial software configuration is put on the
node. In order to protect keys, this can happen in a secure environment.
After that the node is ready for deployment.

– M1 initialization: after the sensor nodes are deployed they are performing
the network set-up, e.g. exploring their neighbourhood, setting up routing
information, etc.

– M2 normal operation: the sensor node executes its application specific task.
– M3 management: If an unexpected behaviour is detected, e.g. caused by en-

vironment or by an attack, the node will enter the management state. The
reason for the interruption is analysed and appropriate actions are initiated.
The management state is also entered when an code update has to be ex-
ecuted. Whether a dynamic code update or re-start of the sensor node is
necessary, depends on the trigger which initiated the transition from M2 to
M3. If DCU has to be executed the Configuration Center shall verify if only
the requesting node has to be updated or whether other nodes in the network
also need to be re programmed (see Figure 5)



Fig. 4. Sensor node states before and after deployment

Fig. 5. State M2 and M3 including their internal states and events triggering the
transition from M2 to M3 and vice versa



Message Interpreter The Message Interpreter provides local intelligence which
is needed to decide for example if the current sensor node is capable to answer
a query correctly or whether it has to forward the message. In addition it is a
kind of middleware scheduler which passes incoming data to the corresponding
middleware modules.

The message interpreter consists of two parts. It has a static part that is
responsible for dealing with all messages that are directed to the middleware
core components DCU and SMM. Its configurable part depends on the services
deployed on the node. In order to properly support the configurable part the
message interpreter uses a kind of registry which is shared with and maintained
by the DCU module. Each time a module is exchanged, deleted or additionally
installed the DCU module updates the registry. Thus, the message interpreter
always knows which modules are available. Depending on the currently avail-
able modules and the node’s current role and the message address the message
interpreter decides what to do. In principle it is a three stages decision chain.

1. If the node is not the intended recipient the message forwarded.
2. If the node is the intended recipient the message interpreter checks if the

corresponding module is deployed. If yes It is checked if the sensor node
run in the appropriate role. If yes the message is delivered, otherwise it it
forwarded to a more appropriate node.

3. If the node is the intended recipient but the corresponding module is not
deployed the SMM is informed about this misalignment. The SMM can then
decide what to do. Options are sending a misalignment message back to the
configuration center, requiring a code update or just ignore the misalignment.
The reaction of the SMM will depend on the sender of the message, i.e. if the
sender is a well known trustworthy party some action will be taken otherwise
the misalignment might be ignored.

Abstraction layer The abstraction layer provides generic interfaces to basic
and complex services so they can be developed independent of the underlying
operating system. Due to the nature of the security modules under development
we foresee two interfaces: a storage and a communication interface. The former
will provide memory management functionality such as allocation of memory,
store and fetch operations of data items used by higher layers. The communi-
cation interface handles incoming and outgoing messages. The latter are passed
as payload to the appropriate OS dependent interface. Incoming messages are
passed to the message interpreter after removing all protocol headers and trailers
if necessary, i.e. if the OS did not already remove them.

DCU This module is necessary to allow reconfiguration of sensor nodes during
their lifetime. Potential triggers can be newly detected vulnerabilities of security
modules or a simple reconfiguration due to deployment of new applications.

It can be assumed that there is a need for change or adaption of the secu-
rity mechanisms also after the deployment of the nodes. It can be caused by a



changed network structure or size, or even by a broken security algorithm. This
is why dynamic code updates are an substantial need of our security middle-
ware. The diagram shown in figure 5 refers to DCU in state M3. That means
that the system requires the capability to change the functionality running on
the sensor node during runtime whenever it is needed by the management. In
kernel based operating systems like Contiki[4] such dynamic updates are not
very challenging. Processes can be added or stopped and executable code can
be stored or removed from the node. In very resource efficient operating systems
like TinyOS[8] that merge operating system and application to one image it is
not that straightforward to change the functionality. Recently several mecha-
nisms have been developed that provide code update functionality for TinyOS.
Currently we are focusing on FlexCup [11],[12] that allows to change methods
at runtime.

If the configuration of sensor nodes is changed during their life time, this is
recorded at the WSN configuration map repository (see fig. 3). The repository
always reflects the middleware instantiation of all sensor nodes starting from
the first set-up. The current set-up of all nodes within a certain part or with
a common task is used as an additional constraint whenever a code update
is required after deployment. By that interoperability inside the WSN can be
guaranteed, e.g. the use of different aggregator node election algorithms can be
avoided.

4.3 Service Layer

As already mentioned there are two logic classes of services. This has been re-
flected in Figure 3 as well. The services are build from modules. In general, one
module can use other modules, i.e. can use the functionality provided by other
modules. This dependency causes that some of the services are on the top of
the stack or tree, what actually causes that their functionality is more complex
compared to services from lower parts of this structure.

This differentiation here is completely independent from the kind of func-
tionality provided. It is only based on the information if a service is used by
another or not.

Basic services are modules that do not support several functionality but just
one. But they may rely on other basic services such as cipher means do since
they require random number generators to be deployed. An example of basic
service may be the secure random number generator presented in [3].

Complex services have more complex functionality, e.g. aggregation and per-
sistent storage of sensor readings can be provided by the tinyPEDs service [6].
In order to fulfil their tasks such services may require support from basic ser-
vices, e.g. to do encryption or decryption. But a complex service may also be
implemented in a monolithic way so that it does not need any basic services to
fulfil its tasks. Therefore the complex services may access the abstraction layer
directly as basic services do.



5 Conclusions

In this paper we have introduced a flexible security providing middleware ap-
proach. Our way to achieve flexibility is twofold. On one hand we propose the
use of a configuration tool that compiles a security architecture at development
time, and on the other hand we provide an architecture that allows for dynamic
exchange of security modules at run time.

The use of a middleware compiler like approach ensures that the application
programmer no longer needs to be also a security expert, and by that reduces
the probability of mis-configurations. The capability of up-dating the security
configuration during run time is especially beneficial for long-living applications.
It allows to exchange successfully attacked security means against still unbroken
ones. The re-compilation of the security configuration of a certain sensor node
is also executed by our configKIT.

We are currently finalising the XML based description languages for security
modules, sensor node description and security requirements of the application.
Our next research steps concern the selection of security modules and means to
prove that the combination of the selected modules really provides the required
security means at the required security level.
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11. Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder, Olga
Saukh, and Kurt Rothermel. FlexCup: A Flexible and Efficient Code Update Mech-
anism for Sensor Networks. In Wireless Sensor Networks: Third European Work-
shop, EWSN 2006. Springer-Verlag, 2006.

12. A. Poschmann, D. Westhoff, and A. Weimerskirch. Dynamic code update for the
efficient usage of security components in wsns. In Proceedings of the 4th Workshop
on Mobile Ad-Hoc Networks (WMAN), 2007.
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