
GALS Design of ECC Against Side-Channel Attacks

– A Comparative Study

Xin Fan
1
, Steffen Peter

2
 and Milos Krstic

1

1
IHP, Im Technologiepark 25, Frankfurt (Oder), Germany

2
CECS, University of California - Irvine

{fan, krstic}@ihp-microelectronics.com; st.peter@uci.edu

Abstract — Elliptic Curve Cryptography (ECC) represents the

state-of-the-art of public-key cryptography. It is very computation
intensive and hardware consuming for ASIC implementation. In
this work, an ECC processor based on the Globally Asynchronous
Locally Synchronous (GALS) design is presented. Attention has
been paid on the resistances of GALS design against side-channel
attacks (SCAs). The pausible clocking scheme, with random hop-
ping of clock frequencies, is applied as a countermeasure of SCAs
with low overhead on hardware. A comparative study between the
synchronous and the GALS designs of ECC, in terms of the SCA
resistance, processing efficiency, and hardware costs, is further
elaborated.

Keywords – ECC, SCA, GALS

I. INTRODUCTION

Security of data exchange and processing define one of the

most critical issues for nowadays embedded systems. Crypto-

graphic blocks are typically integrated, e.g., in smart cards and

wireless sensor nodes, for this reason. This, however, imposes

at the same time the requirements of security and efficiency on

hardware design. Among various schemes, the Elliptic Curve

Cryptography (ECC) has proven to be powerful for providing

sufficient complexity of computation on decryption. Given a

medium key size of 130-bits, it is found to be very challenging

to break ECC algorithms in practice with affordable hardware

resources [1].

However, mathematical decryption is not the only approach

to break a cryptography device. It has been demonstrated, over

20 years ago, that the variations of some physical features of a

crypto-device can expose its operating state information, thus

leading to disclosure of the secret key. This type of attacks is

generally termed Side Channel Attacks (SCAs) [2]. Operation

time, power dissipation, and electromagnetic radiation all can

be exploited. Limited knowledge on cryptanalysis is needed in

many cases for applying SCAs. Implementations of a crypto-

algorithm, which is secure from the mathematics perspective,

e.g., ECC, can be trivially breakable for SCAs.

 Among different SCAs, power analysis has been given the

most intensive attention. It relies on the operation and data de-

pendency of a crypto-device in terms of the power dissipation.

Two categories can be generally identified: the Simple Power

Analysis (SPA) and the Differential Power Analysis (DPA).

The SPA is applicable if the 0- and 1-bits of the cryptographic

key result in distinct encryption operations. By observing the

measured power profiles, the key bits can be derived directly.

Statistical analysis is further resorted by DPA to characterize

the power traces for different key bits. Experiments have al-

ready revealed the potential of DPA to detect even marginal

data-dependent variations of power [3].

Imposing timing uncertainty on cryptographic operations

will mask the power traces by noise. SPA and DPA therefore

both can be hampered. Globally Asynchronous Locally Syn-

chronous (GALS) design is suggested as a countermeasure for

this reason [4]. It breaks down crypto-processing into a group

of independent clock regions. This de-synchronizes the execu-

tion of crypto-operations fundamentally. Data synchronization

is performed for communication crossing clock domains. The

non-deterministic latency of synchronization, however, results

in extra variations on operation time. Both effects obscure the

power traces in GALS design and, consequently, challenge the

power analysis. In [5] the authors explored to further boost the

timing uncertainty by introducing GALS pipeline on the inner

iterations of crypto-operations.

So far, most studies of GALS design are carried out on the

conventional symmetric-key crypto-algorithms, i.e., AES/DES

(Advanced/Data Encryption Standard) [4] [5]. This, however,

confines the generality of the performed evaluation. Moreover,

the existing GALS schemes, such as the pipelining of crypto-

operations [5], give rise to prohibitive overhead on silicon area

(X3 – X25) and power dissipation (10-30%), comparing with

the synchronous design. It is thus in demand to advance GALS

solutions for the applications of more sophisticated algorithms

of cryptography, e.g., ECC.

In this paper we present the GALS design of ECC against

SCAs. Our work is based on an optimal synchronous design of

ECC on GF(2
233

) [6]. The pausible clocking scheme reported

in [7] [8] is employed for the GALS ECC adaptation. Reliable

synchronization and high data-throughput essentially account

for its key figures of merit in application. The major metrics of

GALS design, e.g., system partitioning scheme, asynchronous

interconnect structure, and clock randomization strategy, have

been addressed. Based on the experimental results of the syn-

chronous and the GALS ECC implementations, a comparative

study is further presented, covering a broad spectrum of SCA

resistance, processing efficiency and hardware costs. To the

best of our knowledge, this is the first work on the GALS de-

sign of ECC and its performance evaluation.

II. SYNCHRONOUS DESIGN OF ECC – OVERVIEW

ECC is an asymmetric cipher algorithm which uses algebraic

operations on two-dimensional elliptic curves. The coordinates

of elliptic curves are computed usually in specific finite fields.

ECC is able to provide a high level of security with a relatively

short key size. The binary extension finite fields (GF(2
m
)) with

a key size of m = 233 bits is employed in our work. According

to [9], this corresponds to a RSA security of 2048 bits.

The computationally most complicated operation of ECC is

the Elliptic Curve Point Multiplication (ECPM). The ECPM is

a scalar multiplication of a point (P) on the EC and an integer

k, an m-bit-long secret key which is to be protected. The trap-

door property of ECMP ensures that, for known P and Q (Q =

kP), the factor k is untraceable. Processing one bit of k calls for

an inner loop of the ECPM. When the multiplication algorithm

by Lopez and Dahab (LDA) is used, each inner loop has six m-

bit field multiplications, five field squaring, and also three field

additions [10]. A total of m-1 iterations of inner loop need to be

performed for the ECPM on GF(2
m
).

The top-level block diagram of our synchronous ECC design

is shown in Fig. 1 [6]. The main crypto-components include an

m x m-bit multiplier (MULT), and an m-bit arithmetic logic unit

(ALU) to execute squaring and addition. A controller (CTRL) is

employed to schedule the crypto-operations of ECC. It signifies

the MULT and ALU for proper processing at each clock cycle.

An additional m-bit register bank is deployed to load internal

parameters and to allow for external access.
The synchronous ECC processor was synthesized using the

IHP 130-nm CMOS standard cell library. The breakdowns of
power dissipation and silicon area, in accordance with the post-
synthesis netlist, are presented in Table I. The MULT is found
to dominate the power of synchronous ECC design. In contrast,
the ALU is negligible in both area and power. The CTRL, along
with the register banks, is comparable in silicon area with the
MULT, yet with much smaller power consumption.

Fig. 1 Block diagram of the synchronous ECC processor

Tab. I Power and area breakdowns of SYNC ECC processor

 CTRL ALU MUTL TOTAL

Power (mW) 1.71 (28%) 0.42 (7%) 3.97 (65%) 6.10

Area (mm2) 0.11 (45%) 0.02 (10%) 0.11 (45%) 0.24

III. GALS DESIGN OF ECC

Previous work on the GALS design of cryptography shows

significant hardware overhead on both power and silicon area

over the synchronous design [4] [5]. In terms of the embedded

applications, however, design efficiency usually is at least of

equal importance to the robustness against SCAs. Two design

issues fundamentally determine the efficiency of a GALS sys-

tem: design partitioning and asynchronous interconnect. More-

over, attention is deserved by the frequency randomization of

GALS clocks to hamper SCAs in cryptographic devices.

A. System Partitioning

Based on the power and area breakdowns among functional
units, a partitioning scheme of the GALS ECC design has been
explored as depicted in Fig. 2. Three individual clock domains,
each consisting of a functional unit, are introduced. By timing
each of the GALS local clock at an individual frequency, the
switching activity, and thereby the induced dynamic power, of
different functional units will be desynchronized accordingly.
This complicates the characterization and alignment of power
traces measured on the GALS ECC design, and thus challenges
the power analysis attacks.

B. Asynchronous Interconnect

The dataflow of the ECC processor can be characterized in
three aspects. First, rather frequent communications have to be
carried out between the MULT/ALU and the CTRL: six round-
trip data transfer between MULT and CTRL, and five between
ALU and CTRL, within each of the ECPM inner-loop iterations.
Second, the data transfer is executed in a quite large bit width.
As seen in Fig. 1, the data bus has a width of 233 bits. Third,
all the transfers are scheduled by the CTRL unit explicitly. That
is, the CTRL decides the operation time to send/receive an item
of data to/from the MULT and/or the ALU units.

The distinct features of ECC dataflow actually necessitate
an elegant implementation of asynchronous interconnect across
clock domains. The brute-force synchronization, which is done
by double cascaded flipflops as used in [5] for the AES crypto-
graphy, is infeasible in our case. Despite its low hardware over-
heads, it would give rise to a significant performance loss, due
to the multiple clock cycles suffered by each of the inter-clock-
domain data transfers. The dual-clock FIFOs, which represent
the most popular solution nowadays towards the GALS design
of high performance, barely fit our demands as well. To offer a
high data-throughput over the asynchronous clock domains, the
FIFO should be sufficiently deep. This implies a prohibitively
high cost of hardware, especially in silicon area, considering the
large data width (233-bit) of the ECC design.

The above discussions account for our effort of applying the
pausible clocking scheme for the asynchronous interconnect in
GALS ECC design, as depicted in Fig. 3. For each of the GALS
blocks a local clock generator is employed. It is in principle a
gated ring oscillator, with an adjustable clock phase for the safe
synchronization of input data. Communication across clock do-
mains is executed by four handshake channels, each consisting
of a pair of I/O ports (IP/OP). To accommodate the CTRL-unit
scheduling of dataflow in ECC, two types of data channels are
utilized: the push-type channels to send data from CTRL (the
green arrows in Fig. 3), and the pull-type channels to get data
from MULT/ALU (the blue arrows).

C. Clock Randomization

The clock frequency of each GALS block is independently
configured by programming the delay of a ring oscillator in the
corresponding clock generator. A well-known prototype design
of the pausible clock generator can be referred to [11]. It allows
for the static configuration of clock frequency, i.e., configuring
the delay length of a ring oscillator in the idle (reset) mode. For
the resistance of SCAs, however, dynamic frequency adjusting,
preferably to support the cycle-by-cycle frequency hopping, is
required for the GALS design of ECC.

A pausible clock generator, which offers random frequency
hopping (RFH) on its output clock, has been developed in our
work. Fig. 3 illustrates the top-down hierarchical view. Rather
than the design of [11], two cascaded delay lines, which can be
independently configured, are employed in the ring oscillator.
The maximum clock frequency achievable for a GALS block
determines the length of the first–stage delay line: it is constant
and is programmed via a JTAG interface prior to enabling the
ECC. As a contrast, the second-stage delay line is dynamically
configured in the running time of ECC. Its delay varies in each
clock cycle, according to the output value of a random number
generator (RNG). Frequency hopping of the generated clock is
introduced as a result.

It is, however, crucial to avoid glitch on the clock signal due
to frequency hopping. The dynamically configured delay line
(DCDL) has been implemented deliberately for this purpose. It
is made up of a series of delay slices, which are identical in the
structure as shown in Fig. 3(d). Each slice has a control signal,
cc, to decide its working status: if cc = 1, it is activated; other-
wise, deactivated. Once a delay slice is deactivated, all its sub-
sequent slices get bypassed as well, thereby adapting the delay
line. Note that, given the low inputs of a delay slice, i.e., fin =
bin = 0, its outputs will keep to be low, regardless any transient
pulses on cc. The DCDL therefore allows to be configured, yet
without giving rise to glitch, when its output goes low. This has
been achieved by triggering the RNG at the falling edges of the
generated clock, as depicted in Fig. 3(b).

IV. PERFORMANCE EVALUATION

The GALS ECC design was synthesized using the IHP 130-

nm CMOS standard cell library. Its performance has been then

evaluated based on the post-synthesis netlist and simulations.

In the following a comparative study between the synchronous

and GALS ECC designs, in terms of the SCA resistance, hard-

ware costs, and processing efficiency, will be addressed. Also

included here is a short discussion on the experimental results

derived in our work.

A. Resistance Against SCA

The power profiles induced by the synchronous and GALS

designs of ECC were estimated using the Synopsys PrimeTime.

Fig. 4 illustrates an example of the obtained dynamic power for

comparison. Three design cases have been taken into account:

the synchronous baseline design, the GALS design with plesio-

chronous clocking and the GALS design with clock RFH. In all

cases exactly the same six inner-loop iterations of ECPM are

covered, which correspond to the processing of six bits of key.

The processing time of each key bit ki, according to the netlist

simulations, is manually back-annotated onto the power traces

(the slash lines) for the clarity of discussion. The waveforms of

clock signals applied in each case are also sketched.

First addressed in Fig. 4(a) is the power profile induced by

the synchronous design of ECC. Given a certain value of ki, the

synchronous design requires a fixed time of execution for each

of the inner-loop iterations: 56 clock cycles when ki = 1 and 54

clock cycles when ki = 0. Two clock cycles have been saved in

case of ki = 0. This accounts for a marginal speedup of the ECC

processing. On the other side, however, the distinctive patterns

of dynamic power have been introduced: a remarkable drop on

power dissipation occurs for ki = 1. The key bit involved in

each of the inner-loop iterations can be accordingly inferred by

the characterization of power traces. That is, the implemented

synchronous ECC is vulnerable even to SPA.

Fig. 2 Top-level block diagram of the GALS ECC processor

(a) Synchronous ECC @ TCLK = 30 ns

(b) GALS ECC with plesiochronous clocking @ TCLK ≈ 30 ns

(c) GALS ECC with random hopping of clock frequency @ 20 ns ≤ TCLK ≤ 40 ns

Fig. 4 Comparison in power profiles of synchronous and GALS ECC designs (six inner-loop iterations)

Two special working modes have been considered in terms

of the GALS design of ECC. Fig. 4(b) illustrates the dynamic

power induced in case of the plesiochronous clocking. That is,

all the local clocks are programmed to be almost the same in

frequency, only having a tiny mismatch with each other. The

phase drifting between local clocks is incurred consequently.

Synchronization is thus necessary for transferring data reliably

across clock domains. Due to the non-deterministic latency of

synchronization, however, delay uncertainty is imposed on the

crypto-operations of ECC. A variant time of execution there-

fore can be taken by each of the inner-loop iterations. As dis-

closed in Fig. 4(b), this diminishes the leakage of ki by making

the respective power patterns less characterized in comparison

with the synchronous design.

The random frequency hopping is further evaluated for our

GALS design of ECC. The linear feedback shift register was

used as a simple example to get the (pseudo) random numbers.

Each local clock is programmable independently of the others,

with a frequency tuning cycle by cycle. Fig. 4(c) sketches the

waveforms of the generated clocks for reference. The random

hopping of clock frequencies allows to further de-synchronize

the ECC crypto-operations than the plesiochronous clocking.

The timing uncertainty that is introduced on each of the inner-

loop iterations is magnified. It turns out to be rather infeasible

to trace the values of ki by characterizing and distinguishing

the power patterns.

B. Processing Efficiency

The benefit of GALS design against SCAs comes at a cost

of the processing efficiency. As manifested in Fig. 4, additional

clock cycles are expended on each of the inner-loop iterations.

Tab. II reports the running time of an ECPM in the three cases.

The GALS ECC was set to work at a frequency on average the

same as in the synchronous ECC. The plesiochronous clocking

and the RFH clocking are both ~50% over the synchronous one

in terms of the execution time.

Tab. II Comparison in processing efficiency of ECC

Synchronous

@ 33 MHz

GALS with

Plesio. Clocking

GALS with

RFH

Proc time per

ECPM (µs)
396 590 608

Performance

drop
---- 49% 52%

C. Hardware Costs

The GALS design also gives rise to the hardware overhead

comparing with the synchronous design. As shown in Tab. III,

it leads to an increase of 34% in power consumption, and takes

2.41 times of silicon area. Introducing RFH on GALS ECC is

found to be negligible in hardware costs. However, to some ex-

tent this is due to the generation of pseudo random number by

linear feedback shift register.

Tab. III Power and area of GALS ECC design

GALS

BLOCK 1

GALS

BLOCK 2

GALS

BLOCK 3
TOTAL

Power (mW) 2.79 (34%) 0.99 (12%) 4.42 (54%) 8.20

Area (mm2) 0.31 (55%) 0.06 (10%) 0.21 (35%) 0.58

D. Discussions

Our GALS design solution based on pausible clocking pre-

sents an alternative of low hardware cost for cryptography. As

a contrast, the pipelined GALS design suggested in [5] relies

on the unrolling of inner-loop iterations of crypto-operations.

Essentially it suffers from an expense of power and area which

is proportional to the number of GALS blocks in use. For the

desynchronization of three clocks, a silicon area of five times

over the synchronous design can be induced [5].

The GALS design of ECC challenges the DPA attacks as

well. Note that DPA has to be performed on the same crypto-

operation over massive power traces. The alignment of power

traces is crucial due to this reason. However, the variations on

operation time imposed by the GALS design, as exhibited in

Fig. 4, significantly misalign the power profiles. This therefore

complicates the practical applications of DPA. Further work

on the GALS ECC against DPA is in progress.

V. CONCLUSIONS

This is the first work reported in the literature on the GALS

design of ECC. The pausible clocking scheme, with random

frequency hopping of GALS clocks, is employed. It hampers

SCAs by de-synchronizing the cryptographic operations over

time, and advances the GALS design of hardware efficiency

for embedded applications.

REFERENCES

[1] D. V. Bailey et. al., “Breaking ECC2K-130,” in Cryptology
ePrint Archive, Report 2009/541, 2009.

[2] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS and other systems,” in Proc of Advances in
Cryptology (CRYPTO), 1996.

[3] S. Mangard, E. Oswald, T. Popp, “Power analysis attacks:
revealing the secrets of smart cards,” ADIS book series,
Springer, 2007.

[4] F. K. Gurkaynak, “GALS system design: side channel attack
secure cryptographic accelerators,” Ph.D thesis, ETH Zurich,
2006.

[5] R.I. Soares, N.L.V. Calazans, F.G. Moraes, P. Maurine and L.
Torres, “A robust architectural approach for cryptographic
algorithms using GALS pipelines,” in IEEE Design & Test of
Computers, 2011.

[6] S. Peter, P. Langendoerfer and K. Piotrowski, “Flexible
hardware reduction for elliptic curve cryptography in GF(2m),”
in Proc of Conf. on Design, Automation and Test in Europe
(DATE), 2007.

[7] X. Fan, M. Krstic, and E. Grass, “Analysis and optimization of
pausible clocking based GALS design,” in Proc of 26th IEEE
Intl. Conf. on Computer Design (ICCD), 2009.

[8] X. Fan, M. Krstic, and E. Grass, “Performance analysis of
GALS datalink based on pausible clocking,” in Proc of 18th
IEEE Intl. Symp. on Asynchronous Circuits and Systems
(ASYNC), 2012.

[9] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key
sizes,” in Journal of Cryptology: the Journal of the International
Association for Cryptologic Research, 2001.

[10] J. Lopez, and R. Dahab, “Fast multiplication on elliptic curves
over GF(2m) without preconputation,” in Proc. of Intl. Workshop
on Cryptographic Hardware and Embedded Systems (CHES),
1999.

[11] S. Moore, G. Taylor, R. Mullins, and R. Robinson, “Point to
piont GALS interconnect,” in Proc. of 8th Intl. Symp. on Asyn-
chronous Circuits and Systems (ASYNC), 2002.

