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Abstract — Elliptic Curve Cryptography (ECC) represents the 

state-of-the-art of public-key cryptography. It is very computation 
intensive and hardware consuming for ASIC implementation. In 
this work, an ECC processor based on the Globally Asynchronous 
Locally Synchronous (GALS) design is presented. Attention has 
been paid on the resistances of GALS design against side-channel 
attacks (SCAs). The pausible clocking scheme, with random hop-
ping of clock frequencies, is applied as a countermeasure of SCAs 
with low overhead on hardware. A comparative study between the 
synchronous and the GALS designs of ECC, in terms of the SCA 
resistance, processing efficiency, and hardware costs, is further 
elaborated. 
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I.  INTRODUCTION 

Security of data exchange and processing define one of the 

most critical issues for nowadays embedded systems. Crypto-

graphic blocks are typically integrated, e.g., in smart cards and 

wireless sensor nodes, for this reason. This, however, imposes 

at the same time the requirements of security and efficiency on 

hardware design. Among various schemes, the Elliptic Curve 

Cryptography (ECC) has proven to be powerful for providing 

sufficient complexity of computation on decryption. Given a 

medium key size of 130-bits, it is found to be very challenging 

to break ECC algorithms in practice with affordable hardware 

resources [1].  

However, mathematical decryption is not the only approach 

to break a cryptography device. It has been demonstrated, over 

20 years ago, that the variations of some physical features of a 

crypto-device can expose its operating state information, thus 

leading to disclosure of the secret key. This type of attacks is 

generally termed Side Channel Attacks (SCAs) [2]. Operation 

time, power dissipation, and electromagnetic radiation all can 

be exploited. Limited knowledge on cryptanalysis is needed in 

many cases for applying SCAs. Implementations of a crypto-

algorithm, which is secure from the mathematics perspective, 

e.g., ECC, can be trivially breakable for SCAs. 

      Among different SCAs, power analysis has been given the 

most intensive attention. It relies on the operation and data de-

pendency of a crypto-device in terms of the power dissipation. 

Two categories can be generally identified: the Simple Power 

Analysis (SPA) and the Differential Power Analysis (DPA). 

The SPA is applicable if the 0- and 1-bits of the cryptographic 

key result in distinct encryption operations. By observing the 

measured power profiles, the key bits can be derived directly. 

Statistical analysis is further resorted by DPA to characterize 

the power traces for different key bits. Experiments have al-

ready revealed the potential of DPA to detect even marginal 

data-dependent variations of power [3]. 

Imposing timing uncertainty on cryptographic operations 

will mask the power traces by noise. SPA and DPA therefore 

both can be hampered. Globally Asynchronous Locally Syn-

chronous (GALS) design is suggested as a countermeasure for 

this reason [4]. It breaks down crypto-processing into a group 

of independent clock regions. This de-synchronizes the execu-

tion of crypto-operations fundamentally. Data synchronization 

is performed for communication crossing clock domains. The 

non-deterministic latency of synchronization, however, results 

in extra variations on operation time. Both effects obscure the 

power traces in GALS design and, consequently, challenge the 

power analysis. In [5] the authors explored to further boost the 

timing uncertainty by introducing GALS pipeline on the inner 

iterations of crypto-operations.  

So far, most studies of GALS design are carried out on the 

conventional symmetric-key crypto-algorithms, i.e., AES/DES 

(Advanced/Data Encryption Standard) [4] [5]. This, however, 

confines the generality of the performed evaluation. Moreover, 

the existing GALS schemes, such as the pipelining of crypto-

operations [5], give rise to prohibitive overhead on silicon area 

(X3 – X25) and power dissipation (10-30%), comparing with 

the synchronous design. It is thus in demand to advance GALS 

solutions for the applications of more sophisticated algorithms 

of cryptography, e.g., ECC. 

In this paper we present the GALS design of ECC against 

SCAs. Our work is based on an optimal synchronous design of 

ECC on GF(2
233

) [6]. The pausible clocking scheme reported 

in [7] [8] is employed for the GALS ECC adaptation. Reliable 

synchronization and high data-throughput essentially account 

for its key figures of merit in application. The major metrics of 

GALS design, e.g., system partitioning scheme, asynchronous 

interconnect structure, and clock randomization strategy, have 

been addressed. Based on the experimental results of the syn-

chronous and the GALS ECC implementations, a comparative 

study is further presented, covering a broad spectrum of SCA 

resistance, processing efficiency and hardware costs. To the 

best of our knowledge, this is the first work on the GALS de-

sign of ECC and its performance evaluation. 



II. SYNCHRONOUS DESIGN OF ECC – OVERVIEW 

ECC is an asymmetric cipher algorithm which uses algebraic 

operations on two-dimensional elliptic curves. The coordinates 

of elliptic curves are computed usually in specific finite fields. 

ECC is able to provide a high level of security with a relatively 

short key size. The binary extension finite fields (GF(2
m
)) with 

a key size of m = 233 bits is employed in our work. According 

to [9], this corresponds to a RSA security of 2048 bits. 

The computationally most complicated operation of ECC is 

the Elliptic Curve Point Multiplication (ECPM). The ECPM is 

a scalar multiplication of a point (P) on the EC and an integer 

k, an m-bit-long secret key which is to be protected. The trap-

door property of ECMP ensures that, for known P and Q (Q = 

kP), the factor k is untraceable. Processing one bit of k calls for 

an inner loop of the ECPM. When the multiplication algorithm 

by Lopez and Dahab (LDA) is used, each inner loop has six m-

bit field multiplications, five field squaring, and also three field 

additions [10]. A total of m-1 iterations of inner loop need to be 

performed for the ECPM on GF(2
m
). 

The top-level block diagram of our synchronous ECC design 

is shown in Fig. 1 [6]. The main crypto-components include an 

m x m-bit multiplier (MULT), and an m-bit arithmetic logic unit 

(ALU) to execute squaring and addition. A controller (CTRL) is 

employed to schedule the crypto-operations of ECC. It signifies 

the MULT and ALU for proper processing at each clock cycle. 

An additional m-bit register bank is deployed to load internal 

parameters and to allow for external access. 
The synchronous ECC processor was synthesized using the 

IHP 130-nm CMOS standard cell library. The breakdowns of 
power dissipation and silicon area, in accordance with the post-
synthesis netlist, are presented in Table I. The MULT is found 
to dominate the power of synchronous ECC design. In contrast, 
the ALU is negligible in both area and power. The CTRL, along 
with the register banks, is comparable in silicon area with the 
MULT, yet with much smaller power consumption. 

 
Fig. 1 Block diagram of the synchronous ECC processor 

Tab. I Power and area breakdowns of SYNC ECC processor 

 CTRL ALU MUTL TOTAL 

Power (mW) 1.71 (28%) 0.42 (7%) 3.97 (65%) 6.10 

Area (mm2) 0.11 (45%) 0.02 (10%) 0.11 (45%) 0.24 

III. GALS DESIGN OF ECC  

Previous work on the GALS design of cryptography shows 

significant hardware overhead on both power and silicon area 

over the synchronous design [4] [5]. In terms of the embedded 

applications, however, design efficiency usually is at least of 

equal importance to the robustness against SCAs. Two design 

issues fundamentally determine the efficiency of a GALS sys-

tem: design partitioning and asynchronous interconnect. More-

over, attention is deserved by the frequency randomization of 

GALS clocks to hamper SCAs in cryptographic devices.  

A. System Partitioning 

Based on the power and area breakdowns among functional 
units, a partitioning scheme of the GALS ECC design has been 
explored as depicted in Fig. 2. Three individual clock domains, 
each consisting of a functional unit, are introduced. By timing 
each of the GALS local clock at an individual frequency, the 
switching activity, and thereby the induced dynamic power, of 
different functional units will be desynchronized accordingly. 
This complicates the characterization and alignment of power 
traces measured on the GALS ECC design, and thus challenges 
the power analysis attacks. 

B. Asynchronous Interconnect 

The dataflow of the ECC processor can be characterized in 
three aspects. First, rather frequent communications have to be 
carried out between the MULT/ALU and the CTRL: six round-
trip data transfer between MULT and CTRL, and five between 
ALU and CTRL, within each of the ECPM inner-loop iterations. 
Second, the data transfer is executed in a quite large bit width. 
As seen in Fig. 1, the data bus has a width of 233 bits. Third, 
all the transfers are scheduled by the CTRL unit explicitly. That 
is, the CTRL decides the operation time to send/receive an item 
of data to/from the MULT and/or the ALU units. 

The distinct features of ECC dataflow actually necessitate 
an elegant implementation of asynchronous interconnect across 
clock domains. The brute-force synchronization, which is done 
by double cascaded flipflops as used in [5] for the AES crypto-
graphy, is infeasible in our case. Despite its low hardware over-
heads, it would give rise to a significant performance loss, due 
to the multiple clock cycles suffered by each of the inter-clock-
domain data transfers. The dual-clock FIFOs, which represent 
the most popular solution nowadays towards the GALS design 
of high performance, barely fit our demands as well. To offer a 
high data-throughput over the asynchronous clock domains, the 
FIFO should be sufficiently deep. This implies a prohibitively 
high cost of hardware, especially in silicon area, considering the 
large data width (233-bit) of the ECC design. 

The above discussions account for our effort of applying the 
pausible clocking scheme for the asynchronous interconnect in 
GALS ECC design, as depicted in Fig. 3. For each of the GALS 
blocks a local clock generator is employed. It is in principle a 
gated ring oscillator, with an adjustable clock phase for the safe 
synchronization of input data. Communication across clock do-
mains is executed by four handshake channels, each consisting 
of a pair of I/O ports (IP/OP). To accommodate the CTRL-unit 
scheduling of dataflow in ECC, two types of data channels are 
utilized: the push-type channels to send data from CTRL (the 
green arrows in Fig. 3), and the pull-type channels to get data 
from MULT/ALU (the blue arrows). 



C. Clock Randomization 

The clock frequency of each GALS block is independently 
configured by programming the delay of a ring oscillator in the 
corresponding clock generator. A well-known prototype design 
of the pausible clock generator can be referred to [11]. It allows 
for the static configuration of clock frequency, i.e., configuring 
the delay length of a ring oscillator in the idle (reset) mode. For 
the resistance of SCAs, however, dynamic frequency adjusting, 
preferably to support the cycle-by-cycle frequency hopping, is 
required for the GALS design of ECC.  

A pausible clock generator, which offers random frequency 
hopping (RFH) on its output clock, has been developed in our 
work. Fig. 3 illustrates the top-down hierarchical view. Rather 
than the design of [11], two cascaded delay lines, which can be 
independently configured, are employed in the ring oscillator. 
The maximum clock frequency achievable for a GALS block 
determines the length of the first–stage delay line: it is constant 
and is programmed via a JTAG interface prior to enabling the 
ECC. As a contrast, the second-stage delay line is dynamically 
configured in the running time of ECC. Its delay varies in each 
clock cycle, according to the output value of a random number 
generator (RNG). Frequency hopping of the generated clock is 
introduced as a result.  

It is, however, crucial to avoid glitch on the clock signal due 
to frequency hopping. The dynamically configured delay line 
(DCDL) has been implemented deliberately for this purpose. It 
is made up of a series of delay slices, which are identical in the 
structure as shown in Fig. 3(d). Each slice has a control signal, 
cc, to decide its working status: if cc = 1, it is activated; other-
wise, deactivated. Once a delay slice is deactivated, all its sub-
sequent slices get bypassed as well, thereby adapting the delay 
line. Note that, given the low inputs of a delay slice, i.e., fin = 
bin = 0, its outputs will keep to be low, regardless any transient 
pulses on cc. The DCDL therefore allows to be configured, yet 
without giving rise to glitch, when its output goes low. This has 
been achieved by triggering the RNG at the falling edges of the 
generated clock, as depicted in Fig. 3(b).  

IV. PERFORMANCE EVALUATION 

The GALS ECC design was synthesized using the IHP 130-

nm CMOS standard cell library. Its performance has been then 

evaluated based on the post-synthesis netlist and simulations. 

In the following a comparative study between the synchronous 

and GALS ECC designs, in terms of the SCA resistance, hard-

ware costs, and processing efficiency, will be addressed. Also 

included here is a short discussion on the experimental results 

derived in our work. 

A. Resistance Against SCA 

The power profiles induced by the synchronous and GALS 

designs of ECC were estimated using the Synopsys PrimeTime. 

Fig. 4 illustrates an example of the obtained dynamic power for 

comparison. Three design cases have been taken into account: 

the synchronous baseline design, the GALS design with plesio-

chronous clocking and the GALS design with clock RFH. In all 

cases exactly the same six inner-loop iterations of ECPM are 

covered, which correspond to the processing of six bits of key. 

The processing time of each key bit ki, according to the netlist 

simulations, is manually back-annotated onto the power traces 

(the slash lines) for the clarity of discussion. The waveforms of 

clock signals applied in each case are also sketched. 

First addressed in Fig. 4(a) is the power profile induced by 

the synchronous design of ECC. Given a certain value of ki, the 

synchronous design requires a fixed time of execution for each 

of the inner-loop iterations: 56 clock cycles when ki = 1 and 54 

clock cycles when ki = 0. Two clock cycles have been saved in 

case of ki = 0. This accounts for a marginal speedup of the ECC 

processing. On the other side, however, the distinctive patterns 

of dynamic power have been introduced: a remarkable drop on 

power dissipation occurs for ki = 1. The key bit involved in 

each of the inner-loop iterations can be accordingly inferred by 

the characterization of power traces. That is, the implemented 

synchronous ECC is vulnerable even to SPA.      

 

Fig. 2 Top-level block diagram of the GALS ECC processor 



 



                     

(a) Synchronous ECC @ TCLK = 30 ns 

 

 

(b) GALS ECC with plesiochronous clocking @ TCLK ≈ 30 ns 

 

 

(c) GALS ECC with random hopping of clock frequency @ 20 ns ≤ TCLK ≤ 40 ns 

Fig. 4 Comparison in power profiles of synchronous and GALS ECC designs (six inner-loop iterations) 



Two special working modes have been considered in terms 

of the GALS design of ECC. Fig. 4(b) illustrates the dynamic 

power induced in case of the plesiochronous clocking. That is, 

all the local clocks are programmed to be almost the same in 

frequency, only having a tiny mismatch with each other. The 

phase drifting between local clocks is incurred consequently. 

Synchronization is thus necessary for transferring data reliably 

across clock domains. Due to the non-deterministic latency of 

synchronization, however, delay uncertainty is imposed on the 

crypto-operations of ECC. A variant time of execution there-

fore can be taken by each of the inner-loop iterations. As dis-

closed in Fig. 4(b), this diminishes the leakage of ki by making 

the respective power patterns less characterized in comparison 

with the synchronous design. 

The random frequency hopping is further evaluated for our 

GALS design of ECC. The linear feedback shift register was 

used as a simple example to get the (pseudo) random numbers. 

Each local clock is programmable independently of the others, 

with a frequency tuning cycle by cycle. Fig. 4(c) sketches the 

waveforms of the generated clocks for reference. The random 

hopping of clock frequencies allows to further de-synchronize 

the ECC crypto-operations than the plesiochronous clocking. 

The timing uncertainty that is introduced on each of the inner-

loop iterations is magnified. It turns out to be rather infeasible 

to trace the values of ki by characterizing and distinguishing 

the power patterns. 

B. Processing Efficiency 

The benefit of GALS design against SCAs comes at a cost 

of the processing efficiency. As manifested in Fig. 4, additional 

clock cycles are expended on each of the inner-loop iterations. 

Tab. II reports the running time of an ECPM in the three cases. 

The GALS ECC was set to work at a frequency on average the 

same as in the synchronous ECC. The plesiochronous clocking 

and the RFH clocking are both ~50% over the synchronous one 

in terms of the execution time. 

Tab. II Comparison in processing efficiency of ECC 

 
Synchronous  

@ 33 MHz 

GALS with 

Plesio. Clocking 

GALS with 

RFH 

Proc time per 

ECPM (µs) 
396 590 608 

Performance 

drop 
---- 49% 52% 

C. Hardware Costs 

The GALS design also gives rise to the hardware overhead 

comparing with the synchronous design. As shown in Tab. III, 

it leads to an increase of 34% in power consumption, and takes 

2.41 times of silicon area. Introducing RFH on GALS ECC is 

found to be negligible in hardware costs. However, to some ex-

tent this is due to the generation of pseudo random number by 

linear feedback shift register. 

Tab. III Power and area of GALS ECC design 

 
GALS 

BLOCK 1 

GALS 

BLOCK 2 

GALS 

BLOCK 3 
TOTAL 

Power (mW) 2.79 (34%) 0.99 (12%) 4.42 (54%) 8.20 

Area (mm2) 0.31 (55%) 0.06 (10%) 0.21 (35%) 0.58 

D. Discussions 

Our GALS design solution based on pausible clocking pre-

sents an alternative of low hardware cost for cryptography. As 

a contrast, the pipelined GALS design suggested in [5] relies 

on the unrolling of inner-loop iterations of crypto-operations. 

Essentially it suffers from an expense of power and area which 

is proportional to the number of GALS blocks in use. For the 

desynchronization of three clocks, a silicon area of five times 

over the synchronous design can be induced [5].  

The GALS design of ECC challenges the DPA attacks as 

well. Note that DPA has to be performed on the same crypto-

operation over massive power traces. The alignment of power 

traces is crucial due to this reason. However, the variations on 

operation time imposed by the GALS design, as exhibited in 

Fig. 4, significantly misalign the power profiles. This therefore 

complicates the practical applications of DPA. Further work 

on the GALS ECC against DPA is in progress.  

V. CONCLUSIONS 

This is the first work reported in the literature on the GALS 

design of ECC. The pausible clocking scheme, with random 

frequency hopping of GALS clocks, is employed. It hampers 

SCAs by de-synchronizing the cryptographic operations over 

time, and advances the GALS design of hardware efficiency 

for embedded applications.  
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