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ABSTRACT 

In this paper, we present a new scheduling approach for real-time 

tasks in an embedded system. Our method utilizes hierarchical 

scheduling to provide a resource based allocation scheme while 

using a fuzzy logic based feedback scheduler to react to 

environmental changes within the application. The primary goal is 

to provide a scheduling mechanism that can adapt to overload 

conditions but still present a level of service while enforcing the 

temporal isolation between independent applications. The 

scheduler then considers this level of service to make scheduling 

decisions based upon a task’s service requirements, such as 

criticality or timeliness. Implemented in VxWorks on a 

uniprocessor-based platform results show that our adaptive 

approach provides significant advantages, during overload 

conditions, over traditional fixed-priority scheduling schemes. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-

Time and embedded systems. 

General Terms 

Algorithms, Performance, Reliability 

Keywords 
Real-time systems, hierarchical scheduling, fuzzy logic, real-time 

operating systems. 

1. INTRODUCTION 
Current embedded systems are becoming considerably more 

complicated and they are expected to handle increasingly diverse 

applications. No longer are they considered special-purpose 

computing environments but are evolving into more general-

purpose type platforms in terms of their processing and workload 

requirements. These increasingly diverse applications present new 

challenges for traditional real-time scheduling mechanisms in that 

applications can have conflicting objectives. For example, one 

application may be more concerned with screen update response 

as opposed to whether a single update is missed. While a mission 

critical application, such as a navigational task, cannot afford to 

miss even a single update. 

The problem is that traditional real-time scheduling mechanisms 

do not map well to these diverse types of applications specifically 

during a processing fault or during periods of computational 

overload. Faults can occur from longer than unexpected task 

execution time or from programming errors which can lead to the 

starvation for all lower-priority tasks. An overload can occur as 

the result of too many tasks being admitted into the system 

resulting into what is known as the “domino effect” where all 

tasks except the newly admitted one miss their deadlines.  

The challenge is that many embedded systems are expected to 

perform continuous operations in potentially harsh environments 

and execute at least a subset of critical operations during a fault or 

overload condition. In order to enforce these strict timing 

constraints required by critical functions during a fault condition a 

form of temporal isolation is needed so that corresponding timing 

requirements are respected. During an overload event the system 

needs to be able to dynamically adapt to the current load so that 

system performance can degrade gracefully. 

As a solution to these challenges our work utilizes hierarchical 

scheduling to provide the temporal isolation for real-time tasks by 

enforcing their timing constraints. The hierarchical scheduling 

framework (HSF) originally proposed by researchers [1] is a 

component based technique for scheduling complex real-time 

systems. The initial idea in applying this approach is that 

relatively simple components can be used to create larger and 

more complex systems. In this way, the timing constraints of 

individual components can be verified, a type of divide and 

conquer approach. Therefore, by extending this framework we can 

then schedule each application (i.e. component) such that their 

timing constraints are satisfied. However, the current limitation 

with a traditional HSF-based approach is that the scheduling 

parameters for each component are assigned statically. 

Unfortunately, in a dynamic system the resource demand for each 

component can vary significantly especially during periods of 

overload. It is for this reason that we present an adaptive 

mechanism where the component parameters can adapt to 

environmental changes in the system. In this way, the system can 

degrade gracefully in the presence of computational overload 

while still maintaining a level of serviceability for critical 

applications. 

For this work we apply a novel approach where the component 

parameters adapt based upon a value-based heuristic instead of a 

deadline based policy. This value-based approach is applied 

because authors in [5] have presented the limitations of a deadline 

based model for real-time scheduling and have concluded that a 

value-based approach can more accurately represent the cost or 

benefit of meeting or missing a deadline. The challenge is in 

assigning this value metric because in the event of an overload we 

want to degrade the performance gracefully by ensuring that tasks 

are provided at least some minimum level of service. Therefore, 

during an overload when the current schedule is unfeasible we 

want the scheduler to schedule tasks according to some intelligent 

heuristic. Some possible heuristics would include scheduling the 

most important tasks first while still maintaining some level of 

timeliness for the less important tasks. Our approach is to utilize a 

heuristic function for guiding the scheduling decisions in a 

complicated situation where multiple factors may need to be 

considered such as deadlines, task criticality or task response 

times.  

In this paper we present a new adaptive hierarchical scheduler for 

real-time systems (AHS-RT) that provides timing guarantees for 

critical tasks and a minimum level of service for non-critical tasks 

during overload conditions. Our approach is to utilize fuzzy logic 

for the guidance mechanisms because they prove to be easier to 

express, comprehend and modify than other heuristic functions. 

The remainder of this paper is organized as follows. Section 2 

provides an overview of the hierarchical scheduling framework 

used by our scheduling mechanism. Section 3 discusses related 

work and Section 4 provides an overview of the hierarchical 



scheduler (AHS-RT). Section 5 presents the simulations we used 

to provide comparisons between our scheduling approach and 

traditional fixed priority scheduling. In Section 6 we conclude 

with future work and the research summary. 

2. BACKGROUND 
This section provides a background of the terminology used in the 

paper as well as an overview of hierarchical scheduling provided 

as a reference for the overall architecture of adaptive hierarchical 

scheduling. 

2.1 Hierarchical Scheduling Framework 
Hierarchical scheduling provides a framework for scheduling 

multiple real-time applications on a single processor which is 

modeled as a system S. Each system may consist of multiple 

applications (subsystems   ) such that     . Each subsystem 

consists of a number of real-time tasks. Each subsystem is 

associated with a periodic server which provides the temporal 

isolation between subsystems. The execution of tasks is 

performed using a two-level hierarchical scheduling policy: 

global and local. The global scheduling policy determines which 

subsystem has access to the processor while the local scheduling 

policy determines which task should actually execute (Figure 1). 

2.2 Task Model 
We consider a task set                , such that each task    
is defined as               where    is defined as the task period, 

   denotes the task worst case execution time (WCET),    is the 

relative deadline and    represents the task criticality value. It is 

assumed that each task    is a constrained task such that    
     . The criticality value    represents the importance or 

weight of the task as it relates to other tasks in the set. The 

criticality value along with the deadline and period are used by the 

fuzzy inference engine to make scheduling decisions by the local 

scheduler. 

2.3 Subsystem Model 
Each subsystem consists of a task set     such that       . The 

subsystem is modeled as a periodic task so a subsystem can be 

scheduled in a similar way as a simple real-time periodic task. The 

subsystem is defined as               where    represents the 

subsystem period,    represents the subsystem budget and    
represents the subsystem criticality level. Similar to the task 

model the service value    is used to make scheduling decisions at 

the subsystem level. Note that during overload conditions the 

subsystem with the highest criticality level is granted its full 

budget at the possible expense of lower criticality subsystems. 

2.3.1 Periodic Server  
The virtual server is invoked with the corresponding subsystem 

period   . If there are any ready tasks within the subsystem then 

they execute until they complete or the server’s budget    is 

exhausted. If there are no ready tasks to execute or no higher 

priority subsystem needs to utilize some of the server’s budget 

during an overload condition then the capacity is idled away as if 

a background task were running. After a server’s budget is 

exhausted the server suspends the execution of the subsystem 

until the capacity is replenished at the start of the next period. For 

this work we choose a periodic server as the fixed priority server 

algorithm, in part because the simpler design has less overhead 

but also because authors in [2] have shown it to dominate other 

fixed-priority server algorithms.  

2.4 Fuzzy Systems 
The scheduler and the controller of AHS-RT are based upon 

fuzzy-logic heuristics. The fuzzy logic based approach was 

chosen because of its strength in dealing with dynamic   

 

Figure 1: AHS-RT Architecture 

environments involving a certain degree of uncertainty. The fuzzy 

system is defined as having n inputs      , where            
and   , is the collection of numbers for    (universe of discourse 

for   ) and one output     , where   is the universe of discourse 

for   (multiple input single output fuzzy system). The inputs    
and output   are crisp values (i.e. real numbers). The structure of 

the fuzzy system consists of three stages; fuzzication stage, 

inference stage and the defuzzication stage. The fuzzication stage 

converts the crisp input values into fuzzy sets to be used by the 

inference stage. The inference stage uses the rules defined in the 

rule base to convert these fuzzy sets into other fuzzy sets that 

represent the recommendations of the various rules in the rule 

base. The defuzzication stage combines these fuzzy 

recommendations to provide a crisp output  .  

3. RELATED WORK 
Hierarchical scheduling framework (HSF) was initially proposed 

by researchers [1][4][6] as a means to reduce the scheduling 

complexity for open source embedded systems. Resource 

partitioning [7] was introduced as a general technique for limiting 

the effects of overruns in tasks with variable execution times. This 

resource reservation technique can then be applied by hierarchical 

schedulers to provide the temporal isolation between subsystems 

for more predictable behavior, improved reusability and 

composability. However, the current limitation with HSF is that in 

order to determine the resource reservations all tasks parameters 

must be known a priori and fixed during run-time. The problem is 

that accurate task information may not be known or hard to derive 

at run-time. Additionally, in order to account for overload 

conditions the system may need to be over-engineered which 

could lead to significant under utilization during nominal load 

periods.  

In [8] [9] [10] authors proposed a feedback mechanism to account 

for the dynamic behavior when the task parameters may not be 

fully known. The approach was for the scheduler to maximize the 

CPU utilization, avoid system overload and distribute the 

computing resource evenly among tasks. By incorporating 

feedback the scheduler reacts to changes in the workload then 

tries to keep the overall utilization as close as possible to a desired 

set point typically using a type of control mechanism, such as a 

proportional integral derivative (PID) controller. Related work 



[11] [12] adjusts the resource allocation on-line based upon a 

quality-of-service (QoS) scheme where a certain level of service 

is provided in cases overload. However, the primary objective of 

this approach is control performance and not necessarily 

minimizing the number of missed deadlines.  

Authors in [14] took a slightly different approach in that they 

based their scheduler on a benefit based model. Their approach 

was to schedule the tasks using a traditional deadline based 

scheduling policy until a potential fault was detected and before 

an overload condition could occur. After a fault is detected the 

scheduler switches to a benefit based scheduler that considers task 

importance, system state and timeliness to schedule tasks. Authors 

in [13] also took a similar approach in adaptive scheduling except 

they manipulated the task period of other tasks to achieve the 

desired level of performance. 

Other research [15] [16] [17] treated the uncertainty of varying 

execution times as a multi-criteria optimization problem then 

applied fuzzy logic to derive a feasible schedule. Their approach 

was to treat various task parameters, such as deadline, start time 

or execution time, as inputs to the fuzzy scheduler then perform 

fuzzy analysis to assign a task priority value. Additional work 

[18] utilized fuzzy logic as a means for tuning a feedback 

controller to provide optimal resource utilization through task 

period re-adjustment. 

Recent work [19] extended hierarchical scheduling to provide an 

adaptive hierarchical framework for managing overruns in tasks 

with varying execution times. Their approach was to utilize a 

feedback control mechanism for adapting the resource allocation 

by adjusting the amount of budget assigned to a subsystem. By 

adjusting the budgets at run-time the framework can better adapt 

to changes in the workload. 

Our approach in AHS-RT is similar to the work in [19] in that we 

also utilize hierarchical scheduling for determinism and temporal 

isolation. However, AHS-RT differs in how the local scheduling 

and global scheduling is performed. Local scheduling is based 

upon a fuzzy scheduler which is more adept at making scheduling 

decisions when the task parameters are vague. Research by 

authors in [17] demonstrated that fuzzy logic based approaches 

outperform traditional deadline based policies such as earliest 

deadline first (EDF).  In AHS-RT global scheduling also uses a 

feedback controller but the controller is based upon a fuzzy logic 

heuristic instead of a PID controller. Because fuzzy logic can 

better tolerate imprecision thereby providing improved run-time 

flexibility. 

4. AHS-RT Architecture 
This section describes the overall architecture (see Figure 1) of the 

AHS-RT scheduling framework which consists of a two-level 

hierarchical scheduling framework. The root-level contains the 

global scheduler which manages how subsystems (i.e. 

applications) are allocated on the processor. While the node-level 

contains the local scheduler which manages how tasks are 

scheduled on the processor.  

4.1 Global Scheduling 
At run-time the global scheduler chooses the highest priority 

subsystem that has tasks ready to run. The priority is based upon 

the subsystem period    so the shorter the period the higher the 

subsystem priority.  Therefore if the priority of        then    

would be scheduled first with its full budget then    would be 

scheduled next with its full budget unless an overload condition is 

detected. In the event of an overload a higher criticality subsystem 

may request a budget change at the possible expense of a lower 

criticality subsystem which may or may not be a lower priority 

subsystem.  

The logical approach may be to re-assign budgets based upon 

subsystem priority. However, during an overload event studies 

have shown [3] that a value-based approach offers considerable 

advantages over traditional deadline-based approaches. For this 

reason, during an overload event the global scheduler of AHS-RT 

temporarily switches from a deadline-based scheduling policy to a 

value-based scheduling policy. Instead of the highest priority 

subsystem receiving their full budget the subsystem with the 

highest criticality level    will receive their entire budget. 

Therefore, the global scheduler redistributes budgets based upon 

the criticality level which means lower criticality subsystems yield 

their budgets to higher criticality subsystems. This greedy 

approach can lead to starvation, even for some high priority 

subsystems, but this is acceptable in that during overload 

conditions the highest criticality subsystems are considered 

superior to lower criticality subsystems.  

4.1.1 Detecting Overloads 
An overload condition is based upon the overall subsystem 

utilization which is defined as: 

      
  

  
        

and because we are using RM then an overload condition is 

determined by       
 
     , where m is the number of 

subsystems. An overload can occur because a subsystem requests 

a budget change in order to adapt to a fault or missed deadline 

within a task of an individual application. A budget change does 

not necessarily mean that the system is overloaded just that there 

is the potential for an overload condition to exist.  Consider some 

unallocated system utilization denoted as   
  such that      

  

   
 
     , and then this extra utilization could be temporarily 

reallocated to the subsystem requesting the additional budget. 

However, if there are not sufficient resources to satisfy all the 

budget requirements then the system is considered overloaded 

which implies that a budget reallocation needs to be performed. 

4.1.2 Budget Reallocation 
After the full budget has been allocated to the highest criticality 

subsystem the lower criticality budgets needs to be re-

dimensioned. The next lower criticality subsystems are then 

assigned budgets based upon the remaining utilization. The 

algorithm and description for budget dimensioning is provided 

below. 

 

The budget dimensioning algorithm (Algorithm 1) works by 

iterating through all the subsystems    in the subset      of lower 

criticality subsystems. In line 2 the new budget is calculated based 

upon the remaining system utilization. A schedulability test (line 



3) is then performed on the modified budget. If the modified 

budget renders the system unschedulable then a new budget value 

is attempted based upon the previous failed value. The algorithm 

continues to reduce the budgets of lower criticality subsystems 

until a schedulable system is found. 

4.2 Local Scheduling 
The local scheduling of AHS-RT consists of two primary 

components; a fuzzy logic based scheduler and a fuzzy logic 

based feedback controller. The scheduler selects the task to 

execute on the processor derived from the fuzzy rules based 

approach to real-time scheduling. The feedback controller gathers 

system state information for subsystem budget management to 

maximize utilization and minimize missed deadlines. 

4.2.1 Fuzzy Scheduler 
At run-time the fuzzy scheduler selects the highest priority task 

that is ready for execution on the processor. The priority of the 

task is determined by several parameters: task deadline, task 

criticality and task execution time. The task deadline is the time 

before the task should be completed. The task criticality relates to 

the consequences of missing a deadline. The task execution time 

is the worst-case execution time for that task. These parameters 

are then fuzzified and represented as linguistic variables (i.e. a 

word used to describe a variable). Fuzzy rules are then applied to 

the linguistic variables to compute the service value. The 

linguistic values for the three parameters are defined as: task 

deadline (early, on-time, late), task criticality (hard, firm, soft) 

and CPU time (very low, low, normal, high, very high). Fuzzy 

rules are then applied to create a fuzzy conclusion for computing 

the priority level. Figure 2 illustrates the linguistic variables used 

by the inference stage of the fuzzy scheduler. 

 

Figure 2: AHS-RT Inference block system rules 

Some of the fuzzy rules for the scheduler inference mechanism 

are listed as an example here: 

 If (CPU Time is high) and (deadline is late) and 

(criticality is hard) then (Priority is very high) 

 If (CPU Time is normal) and (deadline is on-time)and 

(critically is firm) then (Priority is normal) 

 If (CPU time is low) and (deadline is early) and 

(criticality is soft) then (Priority is low). 

 

 

Figure 3: AHS-RT Decision Surface 

These fuzzy conclusions are then combined to produce a fuzzy 

variable that represents the criticality level of the task. The 

variable is then defuzzified to create a value that is compared to 

other tasks to determine which task should be scheduled next. The 

decision surface illustrates the crisp output value (priority) that is 

obtained based upon the input parameters (See Figure 3). 

 

The fuzzy scheduler algorithm (Algorithm 2) iterates through all 

the tasks    in the task set for a particular subsystem and for each 

task passes the deadline (  ), criticality value (  ) and starting 

time (  ) into the fuzzy inference engine. The output from the 

inference function is a crisp value used to assign a priority to each 

task and stored in a priority array (         ). The task with the 

highest priority is then executed until some scheduling event 

occurs (task completion, new task instance arrives or server 

budget exhaustion). The system status is then updated and if a task 

misses its deadline such as server budget exhaustion then the 

deadline miss is reported to the feedback controller which could 

trigger a budget reallocation across the system. 

4.2.2 Fuzzy Feedback Controller 
The feedback controller in AHS-RT is similar to the FC-UM 

algorithm [20] in that both the miss-ratio and utilization are 

monitored. The reference inputs for miss-ratio    and unused 

budget    are both set to zero. At each sampling instant the miss-

ratio M(k) and the unused subsystem budget U(k) are fed back 

into the controller. These values are then compared to their 

respective set points to determine the difference where du(k) 

represents the utilization error and dm(k) represents the miss-ratio 

error. The output from the fuzzy controller is the budget 

dimensioning factor   . As part of a typical fuzzy controller 

(Figure 4) we need to specify meaningful linguistic values and 

membership functions for each input and output variable. The 

input to the controller are miss ratio    and task utilization ratio 

   defined as a triangular membership functions. The input 

linguistic values are utilization (very low, low, normal, high, very 

high) and deadline misses (zero, small, medium, high). The output 

linguistic values is bandwidth adjustment (none, very small, 

small, medium, big and very big). 

 

Figure 4: Internal structure of the feedback controller 



Some of the fuzzy rules for the controller inference mechanism 

are listed as an example here: 

 If  (misses are zero) and (utilization is normal) then 

(bandwidth adjustment is none) 

 If (misses are small) and (utilization is high) then 

(bandwidth adjustment is small) 

 If  (misses are high) and (utilization is high) then 

(bandwidth adjustment is high) 

4.3 Task Scheduling Example 
To demonstrate AHS-RT we have provided an example 

scheduling scenario. Note for illustration purposes we are only 

considering one subsystem. So, the primary purpose of this 

example is present how the fuzzy scheduler manages tasks within 

the context of one subsystem. 

Table 1: Subsystem Parameters 

Subsystem          

   10 5 10 

Table 2: Task Parameters 

Task             

   10 2 10 5 

   15 5 15 10 

   20 3 20 10 

Table 3: Scheduling snapshot at time 0 

Task                       

   0,10,20,30 10,20,30,40 2 5 ~9 

   0,15,30 15,30 5 10 ~5 

   0,20,40 20, 40 3 10 ~3 

Table 4: Scheduling snapshot at time 10 

Task                       

   20,30 20,30,40 2 5 ~5 

   15,30 15,30 2 10 ~9 

    20 20, 40 3 10 ~7 

Table 5: Scheduling snapshot at time 20 

Task                       

   20,30 30,40 2 5 ~10 

   30 30 5 10 ~5 

   40 40 3 10 ~3 

Consider the task set and subsystem listed in Tables 1 and 2. 

Table 3 describes the scheduling of tasks at the first scheduling 

event where tasks       and    all have the same initial starting 

time but since    has the nearest deadline it is assigned the highest 

priority by the fuzzy scheduler. Therefore,    is allowed to 

execute until completion then at time unit t3 task    executes until 

time unit t5 when the subsystem’s budget expires. At time unit t10 

(see Table 4) the subsystem’s budget is replenished where the 

tasks can continue execution. At this time the fuzzy scheduler 

performs a re-ordering of task priorities to reflect the system state. 

Task    is assigned the highest priority because the start time is 

the earliest and the deadline is the closest. Note that at time unit 

t12 task    will complete execution but task    will be scheduled 

over    even though both tasks have the same relative deadline 

and start time.  This is because    was assigned a higher priority 

by the fuzzy controller because    was defined to be a higher 

criticality task than   . Also note, due to subsystem budget 

exhaustion at time unit t15 task    will miss its deadline which 

would trigger a budget reallocation request to the fuzzy controller 

for an increase in the subsystem budget.  Finally, at time unit t20 

(see Table 5) the scheduler re-orders the task priorities where once 

again    will be assigned the highest priority.  

4.4 Subsystem Reallocation Example 
Consider the following subsystems with parameters presented in 

Table 6 which is used to illustrate how a subsystem is scheduled 

by AHS-RT. 

Table 6: Subsystem Parameters 

Subsystem          

   12 4 10 

   15 3 8 

   20 4 5 

Table 7: Budget Reallocation Snapshot 

Subsystem                         

   12 3 10 -0.2 0.1 ~4.0 

   15 3 8 0.0 0.0 ~3.0 

   20 5 5 0.0 0.0 ~5.0 

Suppose that at some scheduling instant subsystem    has a 

current budget      but due to a deadline miss the fuzzy 

controller recommends a budget increase to 4. Also suppose that 

   and    report no deadline misses or under utilization so the 

fuzzy controller recommends no budget changes. However, the 

increased budget of    causes the schedulability test to fail 

because       
 
      so now the criticality level    is 

considered and since    has the highest criticality level it is 

granted the full budget. After    = 4 the budget dimensioning 

algorithm is performed to redistribute the remaining utilization. 

Initially, the budgets for     and    will be      and       

then a successful schedulability test will be performed.  Next the 

budget for    will be      but the schedulability test will fail. 

Since the system is no longer schedulable the budget for    will 

now be     . This time the system is schedulable so the 

adjusted budgets are reallocated to their respective subsystems. 

5. SIMULATION 
AHS-RT was implemented as part of the VxWorks 6.9 real-time 

operating system (RTOS). The simulations were executed using 

the SIMNT vxsim simulator. For evaluation purposes we ported 

the SNU Real-Time Benchmark Suite [22] to compare deadline 

misses. The SNU real-time benchmark suite contains small C 

programs used for worst-case execution time analysis. The 

programs are mostly numeric and DSP algorithms. In order to 

represent the periodic task model of an embedded system a subset 

of the programs in the benchmark suite were chosen and assigned 

arbitrary task rates and criticality levels. Illustrated in Figure 6 

both AHS-RT and the VxWorks native fixed-priority preemptive 

scheduler (FPPS) are comparable as long as the load factor is 

below ~0.70 which corresponds with the lower bound for priority 

based algorithms. Notice that AHS-RT experiences significantly 

fewer deadline misses than FPPS when the system starts to 

become overloaded (> ~0.70). Also note that AHS-RT manages 



overload more effectively in that it does not start to report 

deadline misses until closer to a ~0.80 load factor. Another 

important observation depicted in Figure 7 is that AHS-RT 

manages deadline misses much more effectively than FPPS for 

higher criticality tasks. Notice that AHS-RT does not even start to 

report deadline misses until close to a ~1.25 load factor while 

FPPS starts to report deadlines as early as ~0.85. Clearly, AHS-

RT is the superior scheduling mechanism as compared to FPPS 

specifically during periods of overload. 

 

Figure 5: Number of Deadline Misses (All Tasks) 

 

Figure 7: Number of Deadline Misses (Highest Criticality 

Tasks) 

6. CONCLUSIONS/FUTURE WORK 
In this paper we considered the problem of how to schedule tasks 

with varying levels of criticality on a uniprocessor to more 

effectively adapt to computational changes. Those changes were 

managed by hierarchical scheduling to provide the temporal 

isolation between tasks. The efficient scheduling of tasks was 

accomplished using a fuzzy based heuristic which has been 

proven to be more effective than traditional deadline based 

approaches especially during periods of overload. The results are 

a demonstrated reduction in deadline misses for all tasks during 

periods of overload as compared to traditional fixed priority based 

scheduling mechanisms. As further confirmation for the 

practicality for this approach we implemented AHS-RT as part of 

the VxWorks RTOS. 

Future work includes evaluating the additional overhead AHS-RT 

incurs in VxWorks as compared to the traditional scheduler. 

Additionally, we would like to extend AHS-RT into a multi-core 

environment and consider semi-independent tasks where 

subsystems would have to share a mutual resource such as a 

semaphore. 
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