
Fuzzy Logic Based Adaptive Hierarchical Scheduling for
Periodic Real-Time Tasks

Tom Springer, Steffen Peter, and Tony Givargis Center for Embedded Computer Systems

University of California, Irvine, USA {tspringe, st.peter, givargis}@uci.edu

ABSTRACT

In this paper, we present a new scheduling approach for real-time

tasks in an embedded system. Our method utilizes hierarchical

scheduling to provide a resource based allocation scheme while

using a fuzzy logic based feedback scheduler to react to

environmental changes within the application. The primary goal is

to provide a scheduling mechanism that can adapt to overload

conditions but still present a level of service while enforcing the

temporal isolation between independent applications. The

scheduler then considers this level of service to make scheduling

decisions based upon a task’s service requirements, such as

criticality or timeliness. Implemented in VxWorks on a

uniprocessor-based platform results show that our adaptive

approach provides significant advantages, during overload

conditions, over traditional fixed-priority scheduling schemes.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-

Time and embedded systems.

General Terms

Algorithms, Performance, Reliability

Keywords
Real-time systems, hierarchical scheduling, fuzzy logic, real-time

operating systems.

1. INTRODUCTION
Current embedded systems are becoming considerably more

complicated and they are expected to handle increasingly diverse

applications. No longer are they considered special-purpose

computing environments but are evolving into more general-

purpose type platforms in terms of their processing and workload

requirements. These increasingly diverse applications present new

challenges for traditional real-time scheduling mechanisms in that

applications can have conflicting objectives. For example, one

application may be more concerned with screen update response

as opposed to whether a single update is missed. While a mission

critical application, such as a navigational task, cannot afford to

miss even a single update.

The problem is that traditional real-time scheduling mechanisms

do not map well to these diverse types of applications specifically

during a processing fault or during periods of computational

overload. Faults can occur from longer than unexpected task

execution time or from programming errors which can lead to the

starvation for all lower-priority tasks. An overload can occur as

the result of too many tasks being admitted into the system

resulting into what is known as the “domino effect” where all

tasks except the newly admitted one miss their deadlines.

The challenge is that many embedded systems are expected to

perform continuous operations in potentially harsh environments

and execute at least a subset of critical operations during a fault or

overload condition. In order to enforce these strict timing

constraints required by critical functions during a fault condition a

form of temporal isolation is needed so that corresponding timing

requirements are respected. During an overload event the system

needs to be able to dynamically adapt to the current load so that

system performance can degrade gracefully.

As a solution to these challenges our work utilizes hierarchical

scheduling to provide the temporal isolation for real-time tasks by

enforcing their timing constraints. The hierarchical scheduling

framework (HSF) originally proposed by researchers [1] is a

component based technique for scheduling complex real-time

systems. The initial idea in applying this approach is that

relatively simple components can be used to create larger and

more complex systems. In this way, the timing constraints of

individual components can be verified, a type of divide and

conquer approach. Therefore, by extending this framework we can

then schedule each application (i.e. component) such that their

timing constraints are satisfied. However, the current limitation

with a traditional HSF-based approach is that the scheduling

parameters for each component are assigned statically.

Unfortunately, in a dynamic system the resource demand for each

component can vary significantly especially during periods of

overload. It is for this reason that we present an adaptive

mechanism where the component parameters can adapt to

environmental changes in the system. In this way, the system can

degrade gracefully in the presence of computational overload

while still maintaining a level of serviceability for critical

applications.

For this work we apply a novel approach where the component

parameters adapt based upon a value-based heuristic instead of a

deadline based policy. This value-based approach is applied

because authors in [5] have presented the limitations of a deadline

based model for real-time scheduling and have concluded that a

value-based approach can more accurately represent the cost or

benefit of meeting or missing a deadline. The challenge is in

assigning this value metric because in the event of an overload we

want to degrade the performance gracefully by ensuring that tasks

are provided at least some minimum level of service. Therefore,

during an overload when the current schedule is unfeasible we

want the scheduler to schedule tasks according to some intelligent

heuristic. Some possible heuristics would include scheduling the

most important tasks first while still maintaining some level of

timeliness for the less important tasks. Our approach is to utilize a

heuristic function for guiding the scheduling decisions in a

complicated situation where multiple factors may need to be

considered such as deadlines, task criticality or task response

times.

In this paper we present a new adaptive hierarchical scheduler for

real-time systems (AHS-RT) that provides timing guarantees for

critical tasks and a minimum level of service for non-critical tasks

during overload conditions. Our approach is to utilize fuzzy logic

for the guidance mechanisms because they prove to be easier to

express, comprehend and modify than other heuristic functions.

The remainder of this paper is organized as follows. Section 2

provides an overview of the hierarchical scheduling framework

used by our scheduling mechanism. Section 3 discusses related

work and Section 4 provides an overview of the hierarchical

scheduler (AHS-RT). Section 5 presents the simulations we used

to provide comparisons between our scheduling approach and

traditional fixed priority scheduling. In Section 6 we conclude

with future work and the research summary.

2. BACKGROUND
This section provides a background of the terminology used in the

paper as well as an overview of hierarchical scheduling provided

as a reference for the overall architecture of adaptive hierarchical

scheduling.

2.1 Hierarchical Scheduling Framework
Hierarchical scheduling provides a framework for scheduling

multiple real-time applications on a single processor which is

modeled as a system S. Each system may consist of multiple

applications (subsystems) such that . Each subsystem

consists of a number of real-time tasks. Each subsystem is

associated with a periodic server which provides the temporal

isolation between subsystems. The execution of tasks is

performed using a two-level hierarchical scheduling policy:

global and local. The global scheduling policy determines which

subsystem has access to the processor while the local scheduling

policy determines which task should actually execute (Figure 1).

2.2 Task Model
We consider a task set , such that each task
is defined as where is defined as the task period,

 denotes the task worst case execution time (WCET), is the

relative deadline and represents the task criticality value. It is

assumed that each task is a constrained task such that
 . The criticality value represents the importance or

weight of the task as it relates to other tasks in the set. The

criticality value along with the deadline and period are used by the

fuzzy inference engine to make scheduling decisions by the local

scheduler.

2.3 Subsystem Model
Each subsystem consists of a task set such that . The

subsystem is modeled as a periodic task so a subsystem can be

scheduled in a similar way as a simple real-time periodic task. The

subsystem is defined as where represents the

subsystem period, represents the subsystem budget and
represents the subsystem criticality level. Similar to the task

model the service value is used to make scheduling decisions at

the subsystem level. Note that during overload conditions the

subsystem with the highest criticality level is granted its full

budget at the possible expense of lower criticality subsystems.

2.3.1 Periodic Server
The virtual server is invoked with the corresponding subsystem

period . If there are any ready tasks within the subsystem then

they execute until they complete or the server’s budget is

exhausted. If there are no ready tasks to execute or no higher

priority subsystem needs to utilize some of the server’s budget

during an overload condition then the capacity is idled away as if

a background task were running. After a server’s budget is

exhausted the server suspends the execution of the subsystem

until the capacity is replenished at the start of the next period. For

this work we choose a periodic server as the fixed priority server

algorithm, in part because the simpler design has less overhead

but also because authors in [2] have shown it to dominate other

fixed-priority server algorithms.

2.4 Fuzzy Systems
The scheduler and the controller of AHS-RT are based upon

fuzzy-logic heuristics. The fuzzy logic based approach was

chosen because of its strength in dealing with dynamic

Figure 1: AHS-RT Architecture

environments involving a certain degree of uncertainty. The fuzzy

system is defined as having n inputs , where
and , is the collection of numbers for (universe of discourse

for) and one output , where is the universe of discourse

for (multiple input single output fuzzy system). The inputs
and output are crisp values (i.e. real numbers). The structure of

the fuzzy system consists of three stages; fuzzication stage,

inference stage and the defuzzication stage. The fuzzication stage

converts the crisp input values into fuzzy sets to be used by the

inference stage. The inference stage uses the rules defined in the

rule base to convert these fuzzy sets into other fuzzy sets that

represent the recommendations of the various rules in the rule

base. The defuzzication stage combines these fuzzy

recommendations to provide a crisp output .

3. RELATED WORK
Hierarchical scheduling framework (HSF) was initially proposed

by researchers [1][4][6] as a means to reduce the scheduling

complexity for open source embedded systems. Resource

partitioning [7] was introduced as a general technique for limiting

the effects of overruns in tasks with variable execution times. This

resource reservation technique can then be applied by hierarchical

schedulers to provide the temporal isolation between subsystems

for more predictable behavior, improved reusability and

composability. However, the current limitation with HSF is that in

order to determine the resource reservations all tasks parameters

must be known a priori and fixed during run-time. The problem is

that accurate task information may not be known or hard to derive

at run-time. Additionally, in order to account for overload

conditions the system may need to be over-engineered which

could lead to significant under utilization during nominal load

periods.

In [8] [9] [10] authors proposed a feedback mechanism to account

for the dynamic behavior when the task parameters may not be

fully known. The approach was for the scheduler to maximize the

CPU utilization, avoid system overload and distribute the

computing resource evenly among tasks. By incorporating

feedback the scheduler reacts to changes in the workload then

tries to keep the overall utilization as close as possible to a desired

set point typically using a type of control mechanism, such as a

proportional integral derivative (PID) controller. Related work

[11] [12] adjusts the resource allocation on-line based upon a

quality-of-service (QoS) scheme where a certain level of service

is provided in cases overload. However, the primary objective of

this approach is control performance and not necessarily

minimizing the number of missed deadlines.

Authors in [14] took a slightly different approach in that they

based their scheduler on a benefit based model. Their approach

was to schedule the tasks using a traditional deadline based

scheduling policy until a potential fault was detected and before

an overload condition could occur. After a fault is detected the

scheduler switches to a benefit based scheduler that considers task

importance, system state and timeliness to schedule tasks. Authors

in [13] also took a similar approach in adaptive scheduling except

they manipulated the task period of other tasks to achieve the

desired level of performance.

Other research [15] [16] [17] treated the uncertainty of varying

execution times as a multi-criteria optimization problem then

applied fuzzy logic to derive a feasible schedule. Their approach

was to treat various task parameters, such as deadline, start time

or execution time, as inputs to the fuzzy scheduler then perform

fuzzy analysis to assign a task priority value. Additional work

[18] utilized fuzzy logic as a means for tuning a feedback

controller to provide optimal resource utilization through task

period re-adjustment.

Recent work [19] extended hierarchical scheduling to provide an

adaptive hierarchical framework for managing overruns in tasks

with varying execution times. Their approach was to utilize a

feedback control mechanism for adapting the resource allocation

by adjusting the amount of budget assigned to a subsystem. By

adjusting the budgets at run-time the framework can better adapt

to changes in the workload.

Our approach in AHS-RT is similar to the work in [19] in that we

also utilize hierarchical scheduling for determinism and temporal

isolation. However, AHS-RT differs in how the local scheduling

and global scheduling is performed. Local scheduling is based

upon a fuzzy scheduler which is more adept at making scheduling

decisions when the task parameters are vague. Research by

authors in [17] demonstrated that fuzzy logic based approaches

outperform traditional deadline based policies such as earliest

deadline first (EDF). In AHS-RT global scheduling also uses a

feedback controller but the controller is based upon a fuzzy logic

heuristic instead of a PID controller. Because fuzzy logic can

better tolerate imprecision thereby providing improved run-time

flexibility.

4. AHS-RT Architecture
This section describes the overall architecture (see Figure 1) of the

AHS-RT scheduling framework which consists of a two-level

hierarchical scheduling framework. The root-level contains the

global scheduler which manages how subsystems (i.e.

applications) are allocated on the processor. While the node-level

contains the local scheduler which manages how tasks are

scheduled on the processor.

4.1 Global Scheduling
At run-time the global scheduler chooses the highest priority

subsystem that has tasks ready to run. The priority is based upon

the subsystem period so the shorter the period the higher the

subsystem priority. Therefore if the priority of then

would be scheduled first with its full budget then would be

scheduled next with its full budget unless an overload condition is

detected. In the event of an overload a higher criticality subsystem

may request a budget change at the possible expense of a lower

criticality subsystem which may or may not be a lower priority

subsystem.

The logical approach may be to re-assign budgets based upon

subsystem priority. However, during an overload event studies

have shown [3] that a value-based approach offers considerable

advantages over traditional deadline-based approaches. For this

reason, during an overload event the global scheduler of AHS-RT

temporarily switches from a deadline-based scheduling policy to a

value-based scheduling policy. Instead of the highest priority

subsystem receiving their full budget the subsystem with the

highest criticality level will receive their entire budget.

Therefore, the global scheduler redistributes budgets based upon

the criticality level which means lower criticality subsystems yield

their budgets to higher criticality subsystems. This greedy

approach can lead to starvation, even for some high priority

subsystems, but this is acceptable in that during overload

conditions the highest criticality subsystems are considered

superior to lower criticality subsystems.

4.1.1 Detecting Overloads
An overload condition is based upon the overall subsystem

utilization which is defined as:

and because we are using RM then an overload condition is

determined by

 , where m is the number of

subsystems. An overload can occur because a subsystem requests

a budget change in order to adapt to a fault or missed deadline

within a task of an individual application. A budget change does

not necessarily mean that the system is overloaded just that there

is the potential for an overload condition to exist. Consider some

unallocated system utilization denoted as
 such that

 , and then this extra utilization could be temporarily

reallocated to the subsystem requesting the additional budget.

However, if there are not sufficient resources to satisfy all the

budget requirements then the system is considered overloaded

which implies that a budget reallocation needs to be performed.

4.1.2 Budget Reallocation
After the full budget has been allocated to the highest criticality

subsystem the lower criticality budgets needs to be re-

dimensioned. The next lower criticality subsystems are then

assigned budgets based upon the remaining utilization. The

algorithm and description for budget dimensioning is provided

below.

The budget dimensioning algorithm (Algorithm 1) works by

iterating through all the subsystems in the subset of lower

criticality subsystems. In line 2 the new budget is calculated based

upon the remaining system utilization. A schedulability test (line

3) is then performed on the modified budget. If the modified

budget renders the system unschedulable then a new budget value

is attempted based upon the previous failed value. The algorithm

continues to reduce the budgets of lower criticality subsystems

until a schedulable system is found.

4.2 Local Scheduling
The local scheduling of AHS-RT consists of two primary

components; a fuzzy logic based scheduler and a fuzzy logic

based feedback controller. The scheduler selects the task to

execute on the processor derived from the fuzzy rules based

approach to real-time scheduling. The feedback controller gathers

system state information for subsystem budget management to

maximize utilization and minimize missed deadlines.

4.2.1 Fuzzy Scheduler
At run-time the fuzzy scheduler selects the highest priority task

that is ready for execution on the processor. The priority of the

task is determined by several parameters: task deadline, task

criticality and task execution time. The task deadline is the time

before the task should be completed. The task criticality relates to

the consequences of missing a deadline. The task execution time

is the worst-case execution time for that task. These parameters

are then fuzzified and represented as linguistic variables (i.e. a

word used to describe a variable). Fuzzy rules are then applied to

the linguistic variables to compute the service value. The

linguistic values for the three parameters are defined as: task

deadline (early, on-time, late), task criticality (hard, firm, soft)

and CPU time (very low, low, normal, high, very high). Fuzzy

rules are then applied to create a fuzzy conclusion for computing

the priority level. Figure 2 illustrates the linguistic variables used

by the inference stage of the fuzzy scheduler.

Figure 2: AHS-RT Inference block system rules

Some of the fuzzy rules for the scheduler inference mechanism

are listed as an example here:

 If (CPU Time is high) and (deadline is late) and

(criticality is hard) then (Priority is very high)

 If (CPU Time is normal) and (deadline is on-time)and

(critically is firm) then (Priority is normal)

 If (CPU time is low) and (deadline is early) and

(criticality is soft) then (Priority is low).

Figure 3: AHS-RT Decision Surface

These fuzzy conclusions are then combined to produce a fuzzy

variable that represents the criticality level of the task. The

variable is then defuzzified to create a value that is compared to

other tasks to determine which task should be scheduled next. The

decision surface illustrates the crisp output value (priority) that is

obtained based upon the input parameters (See Figure 3).

The fuzzy scheduler algorithm (Algorithm 2) iterates through all

the tasks in the task set for a particular subsystem and for each

task passes the deadline (), criticality value () and starting

time () into the fuzzy inference engine. The output from the

inference function is a crisp value used to assign a priority to each

task and stored in a priority array (). The task with the

highest priority is then executed until some scheduling event

occurs (task completion, new task instance arrives or server

budget exhaustion). The system status is then updated and if a task

misses its deadline such as server budget exhaustion then the

deadline miss is reported to the feedback controller which could

trigger a budget reallocation across the system.

4.2.2 Fuzzy Feedback Controller
The feedback controller in AHS-RT is similar to the FC-UM

algorithm [20] in that both the miss-ratio and utilization are

monitored. The reference inputs for miss-ratio and unused

budget are both set to zero. At each sampling instant the miss-

ratio M(k) and the unused subsystem budget U(k) are fed back

into the controller. These values are then compared to their

respective set points to determine the difference where du(k)

represents the utilization error and dm(k) represents the miss-ratio

error. The output from the fuzzy controller is the budget

dimensioning factor . As part of a typical fuzzy controller

(Figure 4) we need to specify meaningful linguistic values and

membership functions for each input and output variable. The

input to the controller are miss ratio and task utilization ratio

 defined as a triangular membership functions. The input

linguistic values are utilization (very low, low, normal, high, very

high) and deadline misses (zero, small, medium, high). The output

linguistic values is bandwidth adjustment (none, very small,

small, medium, big and very big).

Figure 4: Internal structure of the feedback controller

Some of the fuzzy rules for the controller inference mechanism

are listed as an example here:

 If (misses are zero) and (utilization is normal) then

(bandwidth adjustment is none)

 If (misses are small) and (utilization is high) then

(bandwidth adjustment is small)

 If (misses are high) and (utilization is high) then

(bandwidth adjustment is high)

4.3 Task Scheduling Example
To demonstrate AHS-RT we have provided an example

scheduling scenario. Note for illustration purposes we are only

considering one subsystem. So, the primary purpose of this

example is present how the fuzzy scheduler manages tasks within

the context of one subsystem.

Table 1: Subsystem Parameters

Subsystem

 10 5 10

Table 2: Task Parameters

Task

 10 2 10 5

 15 5 15 10

 20 3 20 10

Table 3: Scheduling snapshot at time 0

Task

 0,10,20,30 10,20,30,40 2 5 ~9

 0,15,30 15,30 5 10 ~5

 0,20,40 20, 40 3 10 ~3

Table 4: Scheduling snapshot at time 10

Task

 20,30 20,30,40 2 5 ~5

 15,30 15,30 2 10 ~9

 20 20, 40 3 10 ~7

Table 5: Scheduling snapshot at time 20

Task

 20,30 30,40 2 5 ~10

 30 30 5 10 ~5

 40 40 3 10 ~3

Consider the task set and subsystem listed in Tables 1 and 2.

Table 3 describes the scheduling of tasks at the first scheduling

event where tasks and all have the same initial starting

time but since has the nearest deadline it is assigned the highest

priority by the fuzzy scheduler. Therefore, is allowed to

execute until completion then at time unit t3 task executes until

time unit t5 when the subsystem’s budget expires. At time unit t10

(see Table 4) the subsystem’s budget is replenished where the

tasks can continue execution. At this time the fuzzy scheduler

performs a re-ordering of task priorities to reflect the system state.

Task is assigned the highest priority because the start time is

the earliest and the deadline is the closest. Note that at time unit

t12 task will complete execution but task will be scheduled

over even though both tasks have the same relative deadline

and start time. This is because was assigned a higher priority

by the fuzzy controller because was defined to be a higher

criticality task than . Also note, due to subsystem budget

exhaustion at time unit t15 task will miss its deadline which

would trigger a budget reallocation request to the fuzzy controller

for an increase in the subsystem budget. Finally, at time unit t20

(see Table 5) the scheduler re-orders the task priorities where once

again will be assigned the highest priority.

4.4 Subsystem Reallocation Example
Consider the following subsystems with parameters presented in

Table 6 which is used to illustrate how a subsystem is scheduled

by AHS-RT.

Table 6: Subsystem Parameters

Subsystem

 12 4 10

 15 3 8

 20 4 5

Table 7: Budget Reallocation Snapshot

Subsystem

 12 3 10 -0.2 0.1 ~4.0

 15 3 8 0.0 0.0 ~3.0

 20 5 5 0.0 0.0 ~5.0

Suppose that at some scheduling instant subsystem has a

current budget but due to a deadline miss the fuzzy

controller recommends a budget increase to 4. Also suppose that

 and report no deadline misses or under utilization so the

fuzzy controller recommends no budget changes. However, the

increased budget of causes the schedulability test to fail

because

 so now the criticality level is

considered and since has the highest criticality level it is

granted the full budget. After = 4 the budget dimensioning

algorithm is performed to redistribute the remaining utilization.

Initially, the budgets for and will be and

then a successful schedulability test will be performed. Next the

budget for will be but the schedulability test will fail.

Since the system is no longer schedulable the budget for will

now be . This time the system is schedulable so the

adjusted budgets are reallocated to their respective subsystems.

5. SIMULATION
AHS-RT was implemented as part of the VxWorks 6.9 real-time

operating system (RTOS). The simulations were executed using

the SIMNT vxsim simulator. For evaluation purposes we ported

the SNU Real-Time Benchmark Suite [22] to compare deadline

misses. The SNU real-time benchmark suite contains small C

programs used for worst-case execution time analysis. The

programs are mostly numeric and DSP algorithms. In order to

represent the periodic task model of an embedded system a subset

of the programs in the benchmark suite were chosen and assigned

arbitrary task rates and criticality levels. Illustrated in Figure 6

both AHS-RT and the VxWorks native fixed-priority preemptive

scheduler (FPPS) are comparable as long as the load factor is

below ~0.70 which corresponds with the lower bound for priority

based algorithms. Notice that AHS-RT experiences significantly

fewer deadline misses than FPPS when the system starts to

become overloaded (> ~0.70). Also note that AHS-RT manages

overload more effectively in that it does not start to report

deadline misses until closer to a ~0.80 load factor. Another

important observation depicted in Figure 7 is that AHS-RT

manages deadline misses much more effectively than FPPS for

higher criticality tasks. Notice that AHS-RT does not even start to

report deadline misses until close to a ~1.25 load factor while

FPPS starts to report deadlines as early as ~0.85. Clearly, AHS-

RT is the superior scheduling mechanism as compared to FPPS

specifically during periods of overload.

Figure 5: Number of Deadline Misses (All Tasks)

Figure 7: Number of Deadline Misses (Highest Criticality

Tasks)

6. CONCLUSIONS/FUTURE WORK
In this paper we considered the problem of how to schedule tasks

with varying levels of criticality on a uniprocessor to more

effectively adapt to computational changes. Those changes were

managed by hierarchical scheduling to provide the temporal

isolation between tasks. The efficient scheduling of tasks was

accomplished using a fuzzy based heuristic which has been

proven to be more effective than traditional deadline based

approaches especially during periods of overload. The results are

a demonstrated reduction in deadline misses for all tasks during

periods of overload as compared to traditional fixed priority based

scheduling mechanisms. As further confirmation for the

practicality for this approach we implemented AHS-RT as part of

the VxWorks RTOS.

Future work includes evaluating the additional overhead AHS-RT

incurs in VxWorks as compared to the traditional scheduler.

Additionally, we would like to extend AHS-RT into a multi-core

environment and consider semi-independent tasks where

subsystems would have to share a mutual resource such as a

semaphore.

7. ACKNOWLEDGMENT
This work was supported in part by the National Science

Foundation under NSF grant number 1136146

8. REFERENCES
[1] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an

open environment,” (RTSS’97), pp. 308–319.

[2] Davis, R.I.; Burns, A., "Hierarchical fixed priority pre-emptive

scheduling," (RTSS’05)

[3] Saini, G., "Application of fuzzy logic to real-time scheduling," Real
Time Conference, 2005.

[4] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” (RTSS ’03).

[5] C.D. Locke and H. Tokuda, “A Time-Value Driven Scheduling
Model for Real-Time Operating Systems”, Proc. Symp. on Real-

Time Systems, Nov. 1985.

[6] F. Zhang and A. Burns, “Analysis of hierarchical EDF pre-emptive
scheduling,” in Proc. of the 28th IEEE International Real-Time

Systems Symposium (RTSS’07)

[7] A. Mok, X. Feng and D. Chen, “Resource partition for real-time

systems,” in Proc of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), 2001

[8] J. Stankovic, C. Lu, S. Son and G. Tao, “The case for feedback
control in real-time scheduling,” in Proc. of the 11th Euromicro

Conference on Real-Time Systems (ECRTS ’99).

[9] C. Lu, J. Stankovic, G. Tao and S. Son, “Design and evaluation of a

feedback control EDF scheduling algorithm,” in Proc. of the 20th
IEEE (RTSS’99).

[10] C. Lu, J. Stankovic, S. Son and G. Tao, “Feedback control real-time
scheduling: Framework, modeling and algorithms,” Real-Time

Systems, vol. 23, pp 85-126, 2002.

[11] T. Abdelzaher, E. Atkins and K. Shin, “QoS negotiation in real-time

systems and its application to flight control,” in Proc. of the IEEE
(RTSS’97).

[12] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, “A resource
allocation model for QoS management, “ in Proc. of the IEEE Real-

Time Technology and Applications 1997.

[13] S.P. Dwivedi, "Adaptive Scheduling in Real-Time Systems
Through Period Adjustment", CoRR, 2012.

[14] Richardson, P.; Sarkar, S., "Adaptive scheduling: overload
scheduling for mission critical systems," (RTSA) 1999

[15] J. Yen, J. Lee, N. Pfluger, and S. Natarajan. "Designing a fuzzy

scheduler for hard real-time systems." (1992).

[16] L. Jonathan, A. Tiao, and J. Yen. "A fuzzy rule-based approach to

real-time scheduling." In Fuzzy Systems, In Proc. of the 3rd IEEE
Conference. IEEE, 1994.

[17] S. Mojtaba, and M. Naghibzadeh. "A Fuzzy algorithm for real-time
scheduling of soft periodic tasks." IJCSNS International Journal of

Computer Science and Network Security 6.2A (2006):

[18] X. Feng, X. Shen, L. Liu, Z. Wang, and Y. Sun. "Fuzzy logic based

feedback scheduler for embedded control systems." In Advances in
Intelligent Computing, 2005.

[19] Khalilzad, N.M.; Behnam, M.; Nolte, T., "Adaptive hierarchical
scheduling framework: Configuration and evaluation," (ETFA),

2013.

[20] L., Chenyang, J. Stankovic, H. Son, and G. Tao. "Feedback control
real-time scheduling: Framework, modeling, and algorithms*." Real-

Time Systems (2002).

[21] M. Behnam, T. Nolte, I. Shin, M. Asberg. Towards Hierarchical

Schedling in VxWorks. (OSPERT) 2008

[22] SNU Real-Time Benchmark, http://www.cprover.org

http://www.cprover.org/

