
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2010, Article ID 740823, 12 pages
doi:10.1155/2010/740823

Research Article
Adaptable Security in Wireless Sensor Networks by Using
Reconfigurable ECC Hardware Coprocessors

J. Portilla,1 A. Otero,1 E. de la Torre,1 T. Riesgo,1 O. Stecklina,2 S. Peter,2 and P. Langendörfer2

1 Centro de Electronica Industrial, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid, Spain
2 IHP, Im Technologiepark 25, 15236 Frankfurt, Germany

Correspondence should be addressed to J. Portilla, jorge.portilla@upm.es

Received 26 July 2010; Revised 29 September 2010; Accepted 19 October 2010

Copyright © 2010 J. Portilla et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Specific features of Wireless Sensor Networks (WSNs) like the open accessibility to nodes, or the easy observability of radio
communications, lead to severe security challenges. The application of traditional security schemes on sensor nodes is limited
due to the restricted computation capability, low-power availability, and the inherent low data rate. In order to avoid dependencies
on a compromised level of security, a WSN node with a microcontroller and a Field Programmable Gate Array (FPGA) is used
along this work to implement a state-of-the art solution based on ECC (Elliptic Curve Cryptography). In this paper it is described
how the reconfiguration possibilities of the system can be used to adapt ECC parameters in order to increase or reduce the
security level depending on the application scenario or the energy budget. Two setups have been created to compare the software-
and hardware-supported approaches. According to the results, the FPGA-based ECC implementation requires three orders of
magnitude less energy, compared with a low power microcontroller implementation, even considering the power consumption
overhead introduced by the hardware reconfiguration.

1. Introduction

Wireless sensor networks represent one of the most out-
standing technologies in the last years, and several research
disciplines have appeared to cover the special needs of this
kind of systems, like hardware platforms, communication
protocols, security issues, or operating systems, among
others.

A typical application scenario for WSNs is the deploy-
ment of a set of unattended nodes that operate autonomously
in an environment, which is to be monitored. Sensor nodes
are often deployed in areas where they are freely accessible.
Thus their position, the hardware and even the software
can be compromised. In order to ensure correct system
behavior it is essential to protect wireless sensor nodes and
the wireless communication. Without protection the net-
work can be observed by villains, and confidential informa-
tion can be eavesdropped. Encryption is a reasonable coun-
termeasure to protect data, while it also adds new processing
load to the nodes. Applying strong cryptographic means
to ensure security of the system is often contradicting the
requirement that the WSN need to run for several months
or even years, without human intervention. Traditional

microcontroller-based sensor nodes do not provide su�cient
computation power to process strong cryptomeans, and even
if these operations are executed they consume a significant
amount of energy depleting the battery very quickly.

Moreover, the nature of sensor networks makes their
security requirements dependent on the application and even
the geographical deployment of the nodes. Di�erent applica-
tions working on the same WSN platform will have di�erent
security requirements, implying the necessity of using keys of
di�erent length of the applied security algorithms. Usage of
smaller key sizes for less sensitive information is an adequate
means to minimize the energy consumption. However, many
of today’s e�cient cryptographic implementations do not
allow changing the key size of the security algorithm once
the system is deployed in the field. That is particularly
true for optimized hardware-based cryptographic accelerator
platforms as they are realized as ASICS to improve the
performance and reduce the energy consumption. Conse-
quently, in spite of the advantages provided by hardware
(HW) implementations, only software (SW)-based solutions
allow configuration of di�erent security levels in run time.
In contrast to pure hardware solutions, including an FPGA
that supports partial reconfiguration capabilities into a



2 International Journal of Distributed Sensor Networks

sensor node makes feasible the computational advantages of
hardware implementations and the flexibility of software. If
dynamic and partial reconfiguration is performed remotely,
in an autonomous way, the opportunities to improve the
security and reliability of the system once deployed increase
remarkably.

To demonstrate and evaluate that approach, this paper
focuses on the implementation of the scalar point multipli-
cation, which is the fundamental operation of the public-
key Elliptic Curve Cryptography (ECC). This cryptosystem
is chosen due to the tradeo� between high security and good
performance o�ered by ECC, compared with other state-of-
the-art alternatives, like RSA. Furthermore, this operation
can be used in digital signature (ECDSA), key establishment
(ECDH) and encryption/decryption (ECIES) protocols. The
system has been implemented in a custom platform, which
incorporates a mixed solution based on an 8052 compliant
microcontroller and a Xilinx XC3S200 Spartan 3 FPGA. An
additional XC2V2000 Virtex 2 FPGA was attached to the
custom platform due to size limitations. This approach is far
from being optimized in hardware, but it is suitable for proof
of concept.

Beside the above mentioned, partial dynamic reconfigu-
ration techniques are applied to the system. These techniques
allow reconfiguring only part of the FPGA without stopping
the rest of the circuit. The target is to adapt sensor
networks to di�erent security requirements, depending on
the application and energy budget. Finally, a software
implementation of the ECC algorithm was integrated on a
TI MSP430 microcontroller, in order to verify and compare
the performance between the software framework and the
reconfigurable hardware solution.

The rest of the paper is organized as follows: in Section 2,
an analysis of the state of the art for security in sensor
networks and background on ECC algorithm is presented.
In Section 3, a review on platforms for wireless sensor
networks is presented, with special emphasis on those that
include configurable HW in di�erent ways. In Section 4 the
EC Cryptosystem Architecture is detailed. In Section 5, the
experimental setup used for the di�erent proofs is presented.
In Section 6, the measurement results obtained are shown
and discussed, and finally, in Section 7 some conclusions are
drawn after the description of all the work done.

2. State of the Art
In this section, a state-of-the-art review on security in sensor
networks as well as a background on the ECC algorithm is
provided.

2.1. Security on Sensor Networks. WSN security challenges
have been addressed with di�erent approaches in the recent
past. Specific schemes and techniques have been developed
for WSN scenarios. They are mainly based on secret key
cryptography, since public key-based ones [1] have a com-
putation overhead that has been thought to be infeasible
sensor nodes. An example of a protocol based on symmetric
cryptography is SPINS [2], including TESLA, that provides
authenticated streaming broadcast, and SNEP, addressing

y

A

B

LAB

x

LAC

D = A + C = 2A + B

C = A + B

Figure 1: EC point addition: the summation of the two points A
and B geometrically constructed by determining third intersection
point (LAB) of the line through A and B and mirroring this point on
the x-axis to achieve C = A + B.

data confidentiality, data authentication, and data freshness,
based on a subset of the RC5 algorithm. Other examples
are TinySEC [3], a link layer security architecture that
includes cryptographic primitives like Skipjack and RC5,
and MiniSEC [4], a general purpose security protocol for
the Telos motes, using a Skipjack block-cipher and OCB
encryption.

The main problem when using symmetric security
architectures in WSNs is key establishment and distribution.
Traditional approaches are based on trusted centralized
distribution sites, like Kerberos. These approaches are not
appropriate for sensor networks due to the dynamic nature
of the networks, the random behavior of the communi-
cation links, and the risk of relying on a single point,
located in a potentially aggressive environment. The most
straightforward solution for this problem is to perform a key
predistribution before deployment [5]. A single key is stored
in all nodes, thus capturing a single node compromises all
other nodes as well, which means weak security. Random
key distribution, originally proposed by Eschenauer and
Gligor in [6] is a probabilistic key predistribution scheme,
based on the storage, in each node, of a random subset
from the full pool of keys, reducing memory requirements
and consequences of the capture of a node. If the secure
connectivity of the whole network is still retained using the
initially defined secure paths, a key-exchange mechanism can
be employed to deliver a key between any arbitrary pair of
nodes. Di�erent extensions of this approach, that increase
the security or the e�ciency, are summarized in [7], like the
q-composite or the random pairwise schemes of Chan et al.
[8], and the Du et al. alternative introduced in [9]. More
advanced solutions, based on network clustering schemes,
are LEAP, a flexible protocol with support for di�erent
security level keys [10], SHELL, with high robustness against
node capture [11], and Panja hierarchical key-grouping
scheme, using the tree-based Di�e-Hellman protocol [12].

All these algorithms and techniques have been specifically
designed or adapted for sensor networks, making some
simplifications that can compromise its security. In addition,



International Journal of Distributed Sensor Networks 3

they are only partially scalable, since predictions about
future deployments have to be done before the distribution
and its memory and bandwidth consumption is still high.
Furthermore, they cannot provide the advantages of public-
key algorithms and architectures, like digital signature or
session key distribution, well known and successfully proved
in traditional networks.

Public key encryption schemes can be used to establish
private keys between nodes after deployment, using the
less complex private schemes to encrypt and decrypt data,
allowing decentralized and completely scalable solutions.
For instance, in [13], a Di�e-Hellman exchange protocol
has been implemented on WSN, based on a software ECC
version implemented for MICAz. Another novel approach is
the access control scheme for sensor networks provided in
[14].

Public cryptography, for years, has been considered
infeasible, because of their cost and speed, to be implemented
on sensor networks. However, recent works show successful
implementation examples of public-key cryptography in
constrained embedded devices [15]. The well-established
asymmetric cryptosystem RSA—RSA stands for Rivest,
Shamir, and Adleman who first published the algorithm—
uses 1024 bit and 2048 bit keys and is 1000 times slower than
a symmetric cryptosystem. RSA is based on the factorisation
of large prime numbers. Elliptic curve cryptography (ECC),
a modern replacement of RSA, achieves the same level of
security with a much smaller elliptic curve group. Using
a smaller group reduces the requirements for storage and
transmission. Almost all the ECC implementations reported
for constraint embedded devices are software libraries of
di�erent versions of the algorithm, like NanoECC [16], using
the ATmega128L and MSP430F1611 processors, or TinyECC
[17], or the approaches in [18]. In [19], a very e�cient
ECC implementation called WM ECC, which is based on
prime field operations, is reported. Solutions di�er on the
implementation algorithms, the optimizations performed,
the functional completeness and platforms. The maximum
key size reported in all these articles is 192 bits. The power
consumption of these software solutions is still too high for
applications on real world commercial solutions.

An alternative is to include hardware accelerators to
increase the speed and the e�ciency of Public Key cryp-
tography on sensor networks. One of the first results is
secFLECK [20], a platform that includes a closed Trusted
Platform Module (TPM) from ATMEL, implementing the
RSA algorithm. Other example is the smartcard-based
solution, proposed in [21]. In [22], a platform with recon-
figurable capabilities is used to implement the Rabin’s public
cryptography scheme, with a working principle similar to
RSA, on the FPGA included in the mote. This approach,
due to the asymmetric cost of decryption and encryption, is
well suited to environments that have much more encryption
requirements than decryption.

So, there is no doubt about the benefits of applying
asymmetric encryption algorithms with variable key length
in WSN technologies. The main obstacles are solved by using
reconfigurable HW resources. These show unprecedented
speeds (due to the use of HW) and, as it will be shown, better

energy usage, and with the flexibility comparable to the one
of SW due to the use of reconfigurable logic. This will be the
core of the work presented in the following sections.

2.2. Elliptic Curve Cryptosystem. The elliptic curve cryp-
tosystem (ECC) is an asymmetric cryptosystem that uses
algebraic operations on elliptic curves (EC) over finite fields.
System’s security is based on the complexity of finding the
discrete logarithm of a random elliptic curve element. Due
to the higher di�culty of calculating a discrete logarithm for
points of elliptic curves than the factorisation of large prime,
much smaller keys than in RSA can be used. The level of
security provided by a 1024 bit RSA key can be achieved by a
160 bit EC key.

Arithmetic Basics. ECC is a cryptography scheme that uses
points (x, y) on elliptic curves over finite fields. Any EC point
meets the function

y2 + xy = x3 + x2 + b, (1)

where b is a parameter that characterizes the curve. For
the points—elements of the finite field—mathematic opera-
tions, like addition, multiplication, and so forth, are defined.
Figure 1 shows an exemplary EC and illustrates the point
addition on such a curve. For cryptographic computations
the scalar multiplication kP is the most common operation,
while k is an integer and P is a point (x, y) of the elliptic
curve. With repeated double and add operations the scalar
multiplication can be e�ciently calculated, while its reversal
is not computable in polynomial time.

For ECC, two di�erent kinds of base fields are suitable,
the residue class fields of large prime numbers (GF(p)) and
residue class fields of extended binary fields (GF(2m)). Both
fields are classified as secure, but suitability for implemen-
tation di�ers in hardware and software. Regarding software
implementations, the arithmetic in GF(p) is performed with
natural integers, which simplifies the implementation in
standard microprocessors and makes the use of coprocessing
units, like multiplier, easier. However, an energy- and space-
e�cient hardware implementation is more feasible with
binary fields. Major properties are as follows.

(i) Addition and subtraction are replaced by XOR
operations.

(ii) Carry bits, which slows down integer arithmetics, can
be ignored.

(iii) The binary coe�cients can be e�ciently represented
in hardware.

Consequently, the implementation described in the next
sections is based on binary fields.

3. Platforms for Wireless Sensor Networks

There is a huge variety of wireless sensor network nodes
at commercial or academic levels. For the purpose of this
paper, they can be classified, according to the nature of
the processing elements they integrate, into the following
categories:



4 International Journal of Distributed Sensor Networks

(i) based on a single microprocessor,

(ii) based on FPGAs,

(iii) based on microcontroller plus FPGA,

(iv) based on a System on Programmable Chip,

(v) based on custom configurable HW and a micropro-
cessor.

In this section, several platforms for wireless sensor
networks are presented, focusing on those that include con-
figurable HW. Last subsection presents the custom platform
which has been used for this work.

3.1. Nodes Based on a Single Microprocessor. Traditionally,
wireless sensor networks platforms have been based on low-
cost microcontrollers. This approach is based on the idea
that nodes do not have to perform highly complex tasks and,
moreover, the system should be sleeping most of the time, to
save energy.

Good examples of this kind of platforms are TelosB from
U. C. Berkeley [23], Imote2 from Intel [24], or the Hitachi
one, ZN1 [25]. These nodes have, as main features, low
complexity, low-power consumption, and low size.

Since these platforms do not have reconfigurable
resources, they are out of the scope of this paper, and so,
the focus will center on new solutions with some kind of
combinations of reconfigurable devices of di�erent nature
and microcontrollers/microprocessors.

3.2. Nodes Based on FPGA. In this section, both pure HW
approaches as well as solutions with embedded processors in
the FPGA will be taken into account.

At Technical University of Crete, researchers propose
a low-cost distributed environment for reconfiguring pro-
grammable distributed systems, like sensor networks, called
Parrotfish [26]. In their work, they propose an architecture
divided in three layers: physical and link layer (with Blue-
tooth technology), intermediate layer, to control the node,
and reconfiguration layer.

The Institute of Microelectronics System of Darmstadt
University, has developed a hardware platform based on an
FPGA [27]. The FPGA is the heart of the design, and it is used
to integrate debugging and system monitoring in the logic,
and to emulate the digital part of the final node. Therefore,
their main target is prototyping.

Other groups focus on mixed developments based
on hardware-software codesign, but everything integrated
within the FPGA, like Muralidhar and Rao [28]. In this work
the authors used an FPGA from Altera, a Cyclone II, and
integrate a soft-processor, a NIOS. Their target is to reuse
hardware by dynamic reconfiguration.

Another interesting approach is made by Kahn and
Vemuri [29]. In this work, the influence of adding recon-
figurable hardware to WSNs nodes is analyzed. Their main
contribution is to establish a very accurate model of the
battery, what is usually ignored in most of the works related
to WSNs, even in those works that consider the power
consumption or analyze it. When the battery is about to wear

Figure 2: HW platform used, with µC, and FPGA.

out, they reconfigure the FPGA with less power consuming
tasks, until energy is finished.

3.3. Nodes Based on Microcontroller Plus FPGA. In this
context, Wilder et al. present [30] a reconfigurable wireless
sensor network (REWISE), showing that FPGAs reach an
optimum balance between processing power, energy require-
ments, and flexibility. Using reconfigurable HW, designs
within the nodes can be reprogrammed in the field.

Their solution is based in a 16-bits microcontroller
(MSP430) and a CC2420 transceiver, both from Texas
Instruments. Their system is an implementation of what
they call wireless JTAG, which is independent of the final
FPGA that will be used. Each node includes a repository of
HW/SW configurations and programs to avoid the high cost
of sending these files through the network.

The approach in [31], from Tyndall Institute in Cork, sets
out a modular platform based on an Atmel microcontroller
(ATMEGA128), with the possibility of adding an FPGA
(Spartan 2 XC2S300E from Xilinx) to have more processing
power, like Fast Fourier Transforms or neural networks.
Anyway, the work is not focused on FPGA reconfiguration,
but reprogramming both microcontroller and FPGA before
deploying the WSN.

3.4. Node Based on System on Programmable Chip. The
third group is that which include System on Programmable
Chips (SoPCs), systems with a reconfigurable part, and a
processor, everything in the same integrated circuit. This
approach is very interesting because there are very attractive
commercial solutions from manufacturers like Atmel or
Cypress, although the main drawback is the reduced size
that can be a bottleneck in applications with high area
requirements.

In [32] an implementation based on a SoPC from Atmel
(a Field Programmable System Level Integrated Circuit,
FPLSIC), composed of an 8-bits AVR processor and 40 kgates
of reconfigurable logic, is presented. In this work, one of
the factors to highlight is the energy scavenging from the
environment, which totally determines the reconfiguration
mechanism of the network nodes. In this context, an



International Journal of Distributed Sensor Networks 5

algorithm to adapt the node (reconfiguring the HW) is
implemented. Finally, they have a solution with the speed
of HW and the flexibility of SW. Their conclusion is that
runtime reconfigurability in wireless sensor networks is
feasible and useful.

A similar approach is adopted by Şuşu et al. in [33],
where a video application is implemented with a camera
using an FPLSIC, fully powered by energy from the environ-
ment.

3.5. Nodes Based on Custom Reconfigurable HW and a
Microprocessor. Some researchers work on solutions where
SW and HW coexist from the conceptual formulation of the
circuit, so that there is a reconfigurable element attached to
the processor, and it can be used as the designer prefers. This
approach is, first of all, flexible.

Hinkelmann et al. propose in [34] an architecture based
on a custom self-made processor with embedded reconfig-
urable hardware logic. They state that HW requirements
for WSNs can change due to the nature of the applications
or changes in the environment. A flexible node can be
configured to be used in several applications and could be
potentially deployed more e�ciently than specific ones.

Their main contribution is to include a Reconfiguration
Function Unit (RFU) in a RISC processor. The RFU is
integrated directly in the processor pipeline, in parallel with
the ALU, and it is accessed through the processor registers.

3.6. The Custom Used Platform. The approaches presented
before represent the majority of possible combinations in the
hardware of WSNs nodes.

In this paper, a custom hardware platform for WSNs [35]
is used to implement the ECC algorithm, and to study the
contribution of reconfigurability to wireless sensor networks
in environments where security is a strong requirement.

The node, called Cookie, is based on a modular design,
and it is composed of four main layers: communica-
tions, processing, sensing/actuating, and power supply (see
Figure 2).

The processing layer includes a Xilinx Spartan3 XC3S200
and ADuC841 microcontroller from Analog devices, 8052
core compliant. Therefore, this platform belongs to the
category described in Section 3.3, with nodes that combine
microprocessors and FPGAs.

4. EC Cryptosystem Architecture

For providing an ECC-based asymmetric cryptosystem, an
e�cient scalar point multiplication is required. The function
has to be solved twice for the ECDSA verify operation and
once for an ECDSA sign operation. The implementation
must handle a tradeo� between size, memory footprint
or number of gates, and execution time. This means
that the execution time can be reduced by parallelizing
operations—in hardware—and using large arrays of precom-
puted values—in software.

The approach taken in the work presented in this paper
uses the Montgomery multiplication scheme as described

Table 1: ECC code size size of code and data section of ECC test
program in bytes and percentage of flash usage.

Full program (B) Minimized program (B)
Text size 8646 3,30% 5720 2,18%
Data size 2716 1,04% 2289 0,87%

in [36]. The algorithm is implemented in software and in
hardware in a similar way. The implementation in software
as well as in hardware is focused on a flexible and a size
optimized design.

As illustrated in Figure 3, a scalar multiplication of an EC
point can be divided into the field multiplication and the
reduction of the partial product. The multiplication of two
numbers with a length of m bits results in a number with a
length of (2m�1) bits. Because the elements of the finite field
must have a maximal length of m bits, the corresponding
element of the finite field has to be determined. The corre-
sponding element of the finite field is the remainder from
the division by the irreducible polynomial. This operation is
performed by the reduction unit.

4.1. Software System. The software system has a generic
implementation of the Montgomery scalar point multi-
plication. This implementation is working on curves of
di�erent binary fields and uses generic functions for the
basic operations XOR (polynomial addition and subtrac-
tion), polynomial multiplication and squaring as well as
multiplicative inversion. Only the implementation of the
reduction is curve specific. This flexible design has a very
small footprint and makes the integration of new curves
quite easy. Only the reduction and the initialization function
have to be adapted. In addition to this an external storage of
unused reduction units—for example, as loadable library—
is feasible and opens the opportunity for smaller designs.

Figure 4 contains the footprint of a program with the
ECC scalar point multiplication developed in this work,
which supports the binary fields 163, 233, 283, 409, and 571.
A minimized program that holds merely the multiplication
and the necessary initialization functions needs only 5.7 kB
of flash memory and 2.3 kB of RAM. This is only a bit more
than 2% of the available flash memory and less than 1%
of RAM of the used microcontroller (MSP430F5438, 256 kB
Flash, 16 kB RAM).

The full program, used in the measurement setup, needs
8.6 kB of flash memory and 2.7 kB RAM (see Table 1).
The larger flash usage is due to the additional function
for entering and leaving the low-power mode as well as
interrupting handling.

4.2. Hardware Implementation. The field multiplication is
the most complex operation of the EC scalar multiplication.
In case of using the classic school multiplication 65000
XOR and AND operations are needed for multiplication
of two 256-bit numbers. By using the iterative Karatsuba-
multiplication, the number of AND operations can be
reduced to 6561 [37]. However, the number of XOR
operations remains unchanged. In the hardware design of



6 International Journal of Distributed Sensor Networks

A(x) B(x) C(x)

Reduction

C�(x)

� =

�

m bitm bit 2m� 1 bit

m bit

Figure 3: Multiplication of two m-bit numbers with reduction unit.

Selection/MUX

Partial Multiplier

ResultRegister

Accumulation

Operand A Operand B

Selection/MUX

Partial multiplier

Result register

M
ul

tip
lie

r c
on

tr
ol

le
r

reduction
HWR

B-163
reduction

HWR

B-233
reduction

HWR

B-571

C
on

tr
ol

 w
or

d Partial factors

Partial product

Figure 4: Flexible system design of an ECC coprocessor with
replaceable reduction units.

an EC multiplier presented in the present paper an iterative
Karatsuba method is used, in a recursive procedure [38].
This method reduces the number of XOR operations to
42000. The procedure replaces a multiplication with smaller
multiplications. The replacement is repeated until a bit
length of 8 bits is reached. Finally, the multiplication of the
two 8-bit operands will be done by a classic procedure.
Evaluations have shown that a further splitting does not
improve the procedure [37].

Similar to the software implementation, the hardware
field multiplier is generic and supports curve sizes from 163
up to 571 bits. As shown in Figure 4, the hardware unit is
managed by a multiplier controller. This controls the input
operand selection and the hardware reduction (HWR) unit.
The reduction step is curve specific and has to be selected
according to the performed operation.

The implementation of such a specific EC coprocessor
is feasible and was shown in [38]. The performed size
estimations are based on 0.25 µm CMOS design of IHP. The
values can be ported to the ECC hardware unit that was used
for the measuring in this paper.

In case of using FPGAs for the ECC implementation,
the number of used gates has an additional impact. The
number of available logic units is limited by the model
of the FPGA and can be changed only by switching to
another FPGA model with a higher number of logical units
(LUT). The need for a larger FPGA will not only influence
monetary aspects of the system but also the systems energy
consumption. Particularly in case that a model with the
required number of LUTs is not available and another FPGA

Figure 5: FeuerWhere Node of IHP, a wireless sensor node
equipped with three radios, external flash memory and an ultralow
power microcontroller.

device must be taken. This can be avoided by using the
flexible design presented in this paper and reconfigurable
FPGA devices, which makes the loading or replacement of
partial components like the reduction unit feasible.

5. Experimental Setup

The main objectives of the experimental setup are to
compare the performance of both software and hardware
implementations of the same ECC algorithm, and to study
the feasibility and cost of implementing dynamically recon-
figurable ECC algorithms, with di�erent key sizes, on an
FPGA. In order to compare in a more realistic scenario,
these measurements include the reconfiguration process of
the desired encryption algorithm and the execution of the
encryption process itself. This scheme also allows sharing
the FPGA of the node for di�erent computational tasks. For
instance, the ECC algorithm can be implemented during
a key establishment phase, to set the private key, and
after a reconfiguration process, a less expensive symmetric
algorithm can be configured.

In the software experimental setup, ECCs on the binary
fields B163, B283, and B571 are used. In a test run, one scalar
multiplication of kP is executed, using the base point of the
EC as the point P. The scalar value k is defined in such
a manner that the first bit is set. Since setting the first bit
reductions during multiplication are not possible, an early
execution break can be avoided.

The same task has been implemented in hardware, using
the e�cient architecture described in [35]. Two implemen-
tations were chosen with two di�erent reductions: B283 and
B571.

In all tests, real power consumption was measured within
the sensor nodes or the experimental board, instead of using
the information of the corresponding datasheets.

5.1. Software-Based Approach. For the software-based
approach, the standard microcontroller MSP430F5438
from Texas Instruments (TI) was used on two di�erent



International Journal of Distributed Sensor Networks 7

Figure 6: Experimental setup including the expansion FPGA plus
the Cookie platform.

boards. The first one is the FeuerWhere Node from IHP
(see Figure 5). The node is equipped with the MSP430
microcontroller, three di�erent radio modules, two flash
memories, and a USB to serial converter. The second board
is the TI experimenter board [35].

The ECC operations were executed in a minimized
firmware that initializes all hardware components and runs
the tests in an infinite loop. All peripherals on the IHP node
are disabled as far as possible. After disabling all peripherals,
the node has a power consumption of 2.9 mA in sleep mode.
The consumption is caused by nondeactivated debugging
functions.

For measurements, start and stop of a single run are
signalized via an external General Purpose IO (GPIO) to an
external device. The external device—the TI experimenter
board is also used here—captures the execution time. The
measurement is implemented by using the watchdog timer,
which is configured with a resolution of 2 ms.

The power consumption is captured with a digital multi-
meter “Agilent 34401A”. The node is supplied by laboratory
power supply that is set to a fixed voltage of 3.3 V. The
DC/DC converter on the node is disabled, so that the input
voltage for the microcontroller and peripherals is equal to
the supply voltage. With this setup it is possible to measure
the consumption of all components without any conversion
overhead. The TI experimenter board—used for the compar-
ative measurement—is supplied by USB and uses a DC/DC
converter to generate the core voltage of 3.3 V. The board
is equipped with a jumper to switch o� the microcontroller
supply. It lies inside the power supply lane to the microcon-
troller. Using this jumper makes feasible the measurement of
the microcontroller power consumption only.

5.2. Reconfigurable Logic Setup. The reconfigurable version
of the experimental setup is based on the Cookie platform.
The FPGA Spartan 3 XC3S200 included in this platform is
not large enough to implement the ECC-571. Consequently,
a board with an extra XC2V2000 FPGA was attached to
the Cookie (see Figure 6). The FPGA of the sensor node
was dedicated only for communication purposes between
the ADuC841 microcontroller and the Virtex 2 FPGA, while
the ECC core was implemented in this external FPGA.

Additionally, the points of the curve are received using the
ZigBee layer of the platform from another external Cookie, in
order to set a real scenario. However, the power consumption
of the communication layer was ignored for the purpose of
this paper. The fact of having the external board constitutes
an important overhead regarding the numerical results, but
the setup is still a proof of the idea.

Dynamic reconfiguration was used to switch between the
two available versions of the hardware core, implementing
the elliptic curves B283 and the B571. In this setup, dynamic
reconfiguration has been carried out using an external PC,
for easiness, although it might be done from the node
microcontroller.

6. Measurements

For a comparison of the pure software approach and the cus-
tom modular design the power consumption and execution
time of both was measured. In this section, measurement
results of the software implementation are shown first. The
experimental setup explained in Section 5.1 is used and the
implementation of ECC point multiplication of Section 4.1.
Furthermore the software approach presented in the present
work is compared with state-of-the art work to get a ranking
of it.

After measuring the software approach, the same opera-
tion is run on the Cookie device and power consumption and
execution time are captured. In addition to this, setup time
of the FPGA was measured to get comparable values for the
performance analysis.

6.1. Software Results. The test was executed with four
di�erent clock rates for the elliptic curves B163, B283, and
B571.

In the tests the power consumption of the IHP node was
measured. It was tested in two di�erent execution modes. In
the first mode the MSP430 was running in the Low Power
Mode 4 (LPM4). In this mode all chip internal peripherals
and clocks are disabled and the microcontroller is driven by
an external 32 kHz clock. Leaving this mode is possible by
generating an interrupt. In the second mode the controller
was running at the main clock speed. In this mode four
di�erent tests were run to analyze the influence of the main
clock speed on the overall power consumption. Tests were
executed with the main clock speeds 1 MHz, 4 MHz, 8 MHz,
and 16 MHz.

The power consumption in LPM4 is equal to 2.9 mA.
In this mode, most of the power will be consumed by the
on board peripherals. The microcontroller itself consumes
only 41.2 µA in the LPM4. This value was determined on
the experimenter board, where it is possible to measure
the microcontroller without any peripheral. Nevertheless the
consumption is much higher than described in the micro-
controller’s datasheet. TI specifies a power consumption of
1.69 µA in LPM4. In order to disable the peripherals like
radios, flashes, and so forth, some pins have to be held on
high level. This causes an additional consumption, which
cannot be avoided.



8 International Journal of Distributed Sensor Networks

Table 2: Measurement results of the scalar multiplication of
EC points of curve B163, B283, and B571, executed on the
MSP430F5438 on the IHP node.

ECC MHz ECC CALC
(mA)

Time
(ms)

mAs mWs
(3.3 V)

B163

1 3,2 264208 845,47 2790,0
4 3,8 67272 255,63 843,6
8 4,6 33748 155,24 512,3

16 6,1 16904 103,11 340,3

B283

1 3,2 645356 2065,14 6815,0
4 3,8 164320 624,42 2060,6
8 4,6 82436 379,21 1251,4

16 6,1 41292 251,88 831,2

B571

1 3,2 2134901 6831,68 22544,6
4 3,8 543176 2064,07 6811,4
8 4,6 272608 1254,00 4138,2

16 6,1 136598 833,25 2749,7

Table 3: Measurement results of ECC multiplication on MSP430
without peripherals.

ECC MHz ECC CALC
(mA)

Time
(ms)

mAs mWs
(3.3 V)

B163

1 0,30 264208 79,26 261,6
4 0,90 67272 60,54 199,8
8 1,67 33748 56,36 186,0

16 3,24 16904 54,77 180,7

B283

1 0,30 645356 193,61 638,9
4 0,90 164320 147,89 488,0
8 1,67 82436 137,67 454,3

16 3,24 41292 133,79 441,5

B571

1 0,30 2134901 640,47 2113,6
4 0,90 543176 488,86 1613,2
8 1,67 272608 455,26 1502,3

16 3,24 136598 442,58 1460,5

As shown in Table 2, the time needed to execute the
ECC multiplication ranges from 17 s (B163 at 16 MHz) up to
2135 s (B571 at 1 MHz). Required energy ranges from 0.3 Ws
to 22.5 Ws. The minimal execution time and the minimal
energy consumption are reached at B163 at 16 MHz. The
results show that reducing the clock speed does not improve
the energy consumption. In addition, ECC operations on
binary fields implemented in plain software and executed
with a clock speed less than 8 MHz are not feasible for any
application scenario.

In a second test setup, power consumption of the
MSP430 without any peripheral was captured. The results are
shown in Table 3.

The measurement on the experimenter board substanti-
ates the expectation of the first test. The power consumption
is reduced by the idle consumption of the IHP node. Again,
the optimum is reached at 16 MHz. For all curves, the

Table 4: Performance comparison between state-of-the art works
and the proposal in this paper.

Curve Field kP Time
(s)

ROM size
(kB)

RAM size
(kB)

Proposal GF(2m) 33.7 5.7 2.3
Araz and Qi [39] GF(2m) 32.5 20 1.5
TinyECC [17] GF(2m) 9.9 12.5 1.3
NanoECC [16] GF(2m) 1.1 32.1 2.8
WM-ECC. [19] GF(p) 0.74 13.8 1.3
NanoECC [16] GF(p) 0.72 31.3 2.9

multiplication can be executed with a minimum of energy
at this clock speed.

In Table 4 the performance of the scalar multiplication
is compared with state-of-the art works. All the provided
results have been performed under the same conditions.
While in [16, 17, 39] 163-bit curves on binary fields
are used, [16, 19] demonstrate the performance of ECC
implementations for 160-bit curves on prime fields. All the
results are based on a pure point multiplication, executed at
8 MHz processor speed on MSP430 microcontroller.

The provided solution in the present work is slower than
other more optimized approaches. This is mainly due to the
fact that the presented system is intended to be easily ported
into a hardware design and require a very small memory
footprint. Furthermore, the performance of the software
implementation is comparable to [39], which is used for
self-certified key establishment methodologies in WSNs.
Generally, the performance of the other implementations
is very similar to ours, which justifies the comparisons
provided in this work.

Beyond that, the NanoECC implementation is optimized
for processing speed and the MSP430F1611, which was used
in [16], is an ultralow power device. At 8 MHz and a voltage
of 3.3 V the microcontroller needs only 1.8 mA. So, the
NanoECC and the MSP430 can be seen as the currently least
power-consuming (1.872 mAs) software implementation for
an EC point multiplication on 163-bit binary fields. But the
low power consumption is achieved by using very large mem-
ory footprint. With 32.1 kB the algorithm requires 66.9% of
the MSP430F1611s and 12.5% of the MSP430F5438s flash
memory.

Furthermore as seen in Table 4 the performance of an
optimized point multiplication is very similar in binary and
prime fields, whereby the WM-ECC implementation exten-
sively uses the hardware multiplier of the microcontroller.
As a result of this investigation the least time for software
implementation of a point multiplication on an ultra-low
power microcontroller is tightly close to one second.

6.2. Hardware Results. The two hardware blocks mentioned
before have been implemented in the attached FPGA,
obtaining the area occupation results shown in Table 5. As it
can be seen in this table, logic resources still remain available
to implement other tasks in parallel.



International Journal of Distributed Sensor Networks 9

Table 5: Area occupation of the two implemented ECC cores on the
Virtex-II FPGA.

B283 B571 Percentage of the
FPGA %

Occupied Slices 7681 14078 54.56
4-Input LUTs 11086 20263 71
Equivalent Gates 98275 180317 48

Table 6: Measurements of the ECC operation time, with di�erent
ECC cores and di�erent key sizes for each core.

Hardware
block Size of the key Time (µs) Comparative

percentage

B283 163 360 10%
283 750 20.83%

B571
163 370 10.3%
283 720 20%
571 3600 100 %

Table 7: Measurements of the dynamic and static power consump-
tion of the DEMO setup, including the Cookie and the attached
board.

Hardware
block Dynamic (mA) Static (mA) Di�erence (mA)

B283 206 110 96
B571 231 140 91

In Table 6, execution time for the hardware blocks are
shown. The working frequency of all the hardware is 25 MHz.
Each HW version can calculate the ECC for the curve
equal or less to its size. The B283 is smaller than the
B571 version, because it uses smaller registers, busses, and
so on. Consequently, regarding the execution time, all the
possible combinations of HW block and key sizes have been
evaluated.

In Table 7, the measured power consumption of the cores
is shown. The power consumption percentage of the ECC283
implementation in comparison to the ECC571 is 89% of
the dynamic consumption, and 78% of the Static one. It
is remarkable that the di�erence of energy consumption
between 283 and 571 implementations, even though it is not
very high, is big enough to justify the reconfiguration of the
HW in embedded systems.

In Table 8, a similar analysis has been done, isolating the
power consumption of the attached board, that is, of the ECC
algorithm itself.

According to Table 8, it is possible to observe that the
dynamic configuration is even more justified, in order to
minimize the power consumption.

The FPGA included in the attached board cannot be
reconfigured using the microprocessor included in the
Cookie board. As a result, the functional correctness of
the reconfiguration has been carried out using the external
PC. However, the timing and power consumption mea-
surements of this approach cannot be extrapolated to the
self-reconfigurable autonomous solution. Consequently, the

Table 8: Measurements of the dynamic and static power consump-
tion of the DEMO setup, including only the attached board.

Hardware
block Dynamic (mA) Static (mA) Di�erence (mA)

B283 144 88 56
B571 180 123 57

Table 9: Reconfiguration time estimation of the Spartan3 FPGA.

Hardware block Slices
(CLB columns)

Reconfiguration time
(ms)

B283 57 42,24
B571 109 80,77

Table 10: Power consumption estimation of the Reconfiguration of
each Cipher Block.

Hardware block Power consumption (mAs)
B283 253
B571 484

cost of this approach has been estimated, using previously
measured results. The reconfiguration time of each column
of CLBs of the IHP FPGA, using the microprocessor in the
node, is 741 ms. In spite that there is no enough area on
the device to implement the cores, the number of columns
that they would occupy on the FPGA is calculated, and used
to estimate the reconfiguration time, shown in Table 9. This
result is meaningful, since a similar Spartan3 family FPGA
device with enough size can be integrated in the custom
platform, resulting in comparable results. Regarding the
power consumption, the current is set constantly, to 88 mA,
while the working consumption is 82 mA. Consequently, the
reconfiguration cost is 6 mA, independent of the content
of the reconfiguration. The final power consumption will
depend only on this value, and the reconfigured area.
According to this, the power consumption of the process is
shown in Table 10.

6.3. Analysis of the Results. Based on results of software and
hardware tests shown in the previous subsection, an analysis
can be done using a real application, in order to appropriately
compare the di�erent approaches.

A real application scenario, like the Elliptic Curve Digital
Signature Algorithm (ECDSA), requires one multiplication
for signing and two multiplications for verifying. In the
best case—B163@16 MHz, the proposed software solution,
needs 32 s for signing and 64 s for verifying. The performance
optimized implementation of [16] needs more than one
or two seconds for these operations, but this performance
improvement is achieved with a 5.6 times larger memory
footprint. In addition to this, the measurements with di�er-
ent clock speeds have demonstrated that the best energy bal-
ance can be reached at the maximum clock speed. The higher
power consumption at this clock speed is compensated by
shorter execution time. For real application scenarios, both
implementations are only suitable with penalties.



10 International Journal of Distributed Sensor Networks

In typical application scenarios, sensor nodes are mostly
in LPM4, that is, idle mode. In the proposed application
scenario, according to the results of the work presented in
this paper, speed can be improved in order to use 370 µs in
the signing step and 370 µs × 2 in the verification stage, for a
similar ECDSA scenario. As it was expected, ciphering time
using an HW accelerator is drastically reduced. However, in
this paper, it has been shown that using an ECC scheme on
a WSN HW platform is feasible, regarding to time execution.
Moreover, with these values, the energy consumption is
55.6 µAs, which is much smaller than the presented SW
approach (103.11 mAs) and the optimized SW implementa-
tion (1.872 mA) presented in [16]. This means 18 • 106 oper-
ations with a 2 Ah standard battery. So, in terms of power
consumption, the FPGA-based approach is also feasible.

If this comparison were made for the ECC571, the results
would still be better although not so good. In the SW
approach, energy consumption is 833.25 mAs and in the HW
case 0.8316 mAs, which is a notable improvement, taking
into account time execution. Moreover, this curve represents
a really high level of security, and still is feasible in the WSN
platform.

Considering these results, the FPGA plus µC approach
is much more power e�cient, taking into account that it is
necessary to make the FPGA to go into sleep mode when no
processing is required, or even shut it down.

Alternatively, if further processing is required, dynamic
configurations is useful, since these HW resources may be
reused for other tasks, or adapt one task to di�erent levels
of performance, energy consumption, quality, or similar
figures. For instance, in the application demonstrator, it has
been shown that passing form one ECC implementation into
another one has a reconfiguration cost which is worth, since
it is performed only once before using the ECC core, in order
to have a flexible encryption system that adapts the security
level required by the application to the minimum energy
usage at all times. The reconfiguration cost is still lower than
the software ECC implementations, both in terms of time
and power consumption.

7. Conclusions

In this paper, an original implementation of an ECC
HW core in wireless sensor networks for a partially and
dynamically reconfigurable custom HW platform has been
presented.

As a main conclusion of the work presented, it is possible
to demonstrate that the HW/SW solution is much more
energy e�cient than an SW-based one, and even feasible
to integrate it in a custom platform for WSNs. It has been
demonstrated that a combination of a microcontroller plus
FPGA is much faster and energy e�cient than a memory
footprint and performance optimized software solution.

The measurement results show that a hardware-based
ECC implementation executed on an FPGA outperforms
software implementations on a low-power microcontroller
be at least three orders of magnitude, even when the energy
needed to reconfigure the FPGA is taken into account.

Finally, dynamic reconfiguration of the FPGA to carry
out other tasks while ciphering is not necessary, but could
even further increase the value of the proposed framework
for flexible security in WSNs.

For implementing an optimized design for FPGAs, an
approach with a generic field multiplier and curve-specific
reduction units is proposed as future work. The field
multiplier can be used for all curves and is a static part of
the FPGA design. The reduction units will be replaceable and
will be loaded into the FPGA depending on the application
needs. This design takes advantage of the speed, space, and
energy optimized, specific design. The di�erent reduction
units can be store energy e�cient in an external flash
memory chip. The overhead in the FPGA for the generic field
multiplier and the reload units would be minimal.

Acknowledgment

This work was supported partly by the ARTEMIS JU under
the ARTEMIS-2008-100032 SMART project.

References
[1] R. R. Brooks, B. Pillai, M. Pirretti, and M. C. Weigle, “Multi-

cast encryption infrastructure for security in sensor networks,”
International Journal of Distributed Sensor Networks, vol. 5, no.
2, pp. 139–157, 2009.

[2] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler,
“SPINS: security protocols for sensor networks,” Wireless
Networks, vol. 8, no. 5, pp. 521–534, 2002.

[3] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer
security architecture for wireless sensor networks,” in Proceed-
ings of the Second International Conference on Embedded Net-
worked Sensor Systems (SenSys ’04), pp. 162–175, Baltimore,
Md, USA, November 2004.

[4] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec:
a secure sensor network communication architecture,” in
Proceedings of the 6th International Symposium on Information
Processing in Sensor Networks (IPSN 2007 ’07), pp. 479–488,
April 2007.

[5] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless
sensor networks,” Communications of the ACM, vol. 47, no. 6,
pp. 53–57, 2004.

[6] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security (CSS
’02), V. Atluri, Ed., pp. 41–47, November 2002.

[7] J. Hwang and Y. Kim, “Revisiting random key pre-distribution
schemes for wireless sensor networks,” in Proceedings of the
ACM Workshop on Security of Ad Hoc and Sensor Networks
(SASN ’04), pp. 43–52, Washington, DC, USA, October 2004.

[8] H. Chan, A. Perrig, and D. Song, “Random key predistribution
schemes for sensor networks,” in Proceedings of the IEEE
Symposium on Security And Privacy, pp. 197–213, May 2003.

[9] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A.
Khalili, “A pairwise key predistribution scheme for wireless
sensor networks,” ACM Transactions on Information and
System Security, vol. 8, no. 2, pp. 228–258, 2005.

[10] S. Zhu, S. Setia, and S. Jajodia, “LEAP+: e�cient security
mechanisms for large-scale distributed sensor networks,”



International Journal of Distributed Sensor Networks 11

ACM Transactions on Sensor Networks, vol. 2, no. 4, pp. 500–
528, 2006.

[11] M. F. Younis, K. Ghumman, and M. Eltoweissy, “Location-
aware combinatorial key management scheme for clustered
sensor networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 17, no. 8, pp. 865–882, 2006.

[12] B. Panja, S. Madria, and B. Bhargava, “Energy-e�cient group
key management protocols for hierarchical sensor networks,”
International Journal of Distributed Sensor Networks, vol. 3, no.
2, pp. 201–223, 2007.

[13] S. Khajuria and H. Tange, “Implementation of di�e-Hellman
key exchange on wireless sensor using elliptic curve cryp-
tography,” in Proceedings of the 1st International Conference
on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace and Electronic Systems Technology (Wire-
less VITAE ’09), pp. 772–776, May 2009.

[14] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography
based access control in sensor networks,” International Journal
of Security and Networks, vol. 1, no. 3-4, pp. 127–137, 2006.

[15] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,
“Comparing elliptic curve cryptography and RSA on 8-
Bit CPUs,” in Proceedings of the International Conference on
Cryptographic Hardware and Embedded Systems (CHES ’04),
vol. 3156, pp. 119–132, 2004.

[16] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and
R. Dahab, “NanoECC: testing the limits of elliptic curve
cryptography in sensor networks,” Proceedings of the 7th
international Conference on Information Processing in Sensor
Networks (IPSN ’08), pp. 305–320, 2008.

[17] A. Liu and P. Ning, “TinyECC: a configurable library for
elliptic curve cryptography in wireless sensor networks,” in
Proceedings of the 7th International Conference on Information
Processing in Sensor Networks (IPSN ’08), pp. 245–256, 2008.

[18] P. Szczechowiak, A. Kargl, M. Scott, and M. Collier, “On
the application of pairing based cryptography to wireless
sensor networks,” in Proceedings of the 2nd ACM Conference
on Wireless Network Security (WiSec ’09), pp. 1–12, Zurich,
Switzerland, March 2009.

[19] H. Wang and Q. Li, “E�cient implementation of public
key cryptosystems on mote sensors,” in Proceedings of the
International Conference on Information and Communication
Security (ICICS ’06), pp. 519–528, December 2006.

[20] W. Hu, P. Corke, W. C. Shih, and L. Overs, “SecFleck: a public
key technology platform for wireless sensor networks,” in
Proceedings of the 6th European Conference on Wireless Sensor
Networks, vol. 5432 of Lecture Notes in Computer Science, pp.
296–311, Springer, Cork, Ireland, February 2009.

[21] P. Pecho, J. Nagy, and P. Hanáček, “Power consumption
of hardware cryptography platform for wireless sensor,” in
Proceedings of the International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT
’09), pp. 318–323, December 2009.

[22] G. Murphy, A. Keeshan, R. Agarwal, and E. Popovici,
“Hardware—software implementation of public-key cryptog-
raphy for wireless sensor networks,” in IET Irish Signals and
Systems Conference, pp. 463–468, June 2006.

[23] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling
ultra-low power wireless research,” in Proceedings of the 4th
IEEE/ACM International Symposium on Information Processing
in Sensor Networks (IPSN ’05), vol. 2005, pp. 364–369, Los
Angeles, Calif, USA, April 2005.

[24] R. Adler, M. Flanigan, J. Huang et al., “Intel mote2, an
advanced platform for demanding sensor network applica-
tions,” in Proceedings of the 3rd International Conference on

Embedded Networked Sensor Systems (SenSys ’05), p. 298, San
Diego, Calif, USA, November 2005.

[25] S. Yamashita, T. Shimura, K. Aiki et al., “A 15 × 15 mm, 1
µA, reliable sensor-net module: enabling application-specific
nodes,” in Proceedings of the 5th International Conference on
Information Processing in Sensor Networks (IPSN ’06), vol.
2006, pp. 383–390, Nashville, Tenn, USA, April 2006.

[26] D. Efstathiou, K. Kazakos, and A. Dollas, “Parrotfish: task
distribution in a low cost autonomous ad hoc sensor network
through dynamic runtime reconfiguration,” in Proceedings
of the 14th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM ’06), pp. 319–320, Napa,
Calif, USA, April 2006.

[27] H. Hinkelmann, A. Reinhardt, S. Varyani, and M. Glesner,
“A reconfigurable prototyping platform for smart sensor
networks,” in Proceedings of the 4th Southern Conference on
Programmable Logic (SPL ’08), pp. 125–130, San Carlos de
Bariloche, Argentina, March 2008.

[28] P. Muralidhar and C. B. R. Rao, “Reconfigurable Wireless
sensor network node based on NIOS core,” in Proceedings of
the 4th International Conference on Wireless Communication
and Sensor Networks (WCSN ’08), pp. 67–72, Allahabad, India,
December 2008.

[29] J. Khan and R. Vemuri, “Energy management in battery-
powered sensor networks with reconfigurable computing
nodes,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL ’05), vol. 2005, pp.
543–546, Tampere, Finland, August 2005.

[30] J. L. Wilder, V. Uzelac, A. Milenković, and E. Jovanov, “Run-
time hardware reconfiguration in wireless sensor networks,” in
Proceedings of the Annual Southeastern Symposium on System
Theory, pp. 154–158, New Orleans, La, USA, March 2008.

[31] S. J. Bellis, K. Delaney, B. O’Flynn, J. Barton, K. M. Razeeb, and
C. O’Mathuna, “Development of field programmable modular
wireless sensor network nodes for ambient systems,” Computer
Communications, vol. 28, no. 13, pp. 1531–1544, 2005.

[32] A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini, and
M. Sarrafzadeh, “Dynamic reconfiguration in sensor networks
with regenerative energy sources,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’07), pp. 1054–1059, Nice, France, April 2007.

[33] A. E. Şuşu, M. Magno, A. Acquaviva, D. Atienza, and G.
de Micheli, “Reconfiguration strategies for environmentally
powered devices: theoretical analysis and experimental valida-
tion,” in Transactions on HiPEAC, vol. 4050 of Lecture Notes in
Computer Science, pp. 341–360, Springer, 2007.

[34] H. Hinkelmann, P. Zipf, and M. Glesner, “Design concepts
for a dynamically reconfigurable wireless sensor node,” in
Proceedings of the 1st NASA/ESA Conference on Adaptive
Hardware and Systems (AHS ’06), pp. 436–441, Istanbul,
Turkey, June 2006.

[35] J. Portilla, J. L. Buron, T. Riesgo, and A. De Castro, “A hardware
library for sensors/actuators interfaces in sensor networks,”
in Proceedings of the 13th IEEE International Conference on
Electronics, Circuits, and Systems, pp. 1244–1247, Nice, France,
December 2006.

[36] P. L. Montgomery, “Speeding the pollard and elliptic curve
methods of factorization,” Mathematics of Computation, vol.
48, no. 177, pp. 243–267, 1987.

[37] Z. Dyka and P. Langendoerfer, “Area e�cient hardware
implementation of elliptic curve cryptography by iteratively
applying karatsuba’s method,” in Proceedings of the Design,
Automation and Test in Europe Conference (DATE ’05), pp. 70–
75, March 2005.



12 International Journal of Distributed Sensor Networks

[38] S. Peter and P. Langendörfer, “An e�cient polynomial mul-
tiplier in GF(2m) and its application to ECC designs,” in
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’07), pp. 1253–1258, IEEE
Society Press, April 2007.

[39] O. Araz and H. Qi, “Load-balanced key establishment
methodologies in wireless sensor networks,” International
Journal of Security and Networks, vol. 1, no. 3-4, pp. 158–166,
2006.


