
00

Component-based Synthesis of Embedded Systems
using Satisfiability Modulo Theories

STEFFEN PETER, University of California, Irvine
TONY GIVARGIS, University of California, Irvine

Constraint programming solvers, such as Satisfiability Modulo Theory (SMT) solvers, are capable tools in
finding preferable configurations for embedded systems from large design spaces. However, constructing
SMT constraint programs is not trivial, in particular for complex systems that exhibit multiple viewpoints
and models. In this paper we propose CoDeL: a component-based description language that allows system
designers to express components as reusable building blocks of the system with their parameterizable prop-
erties, models, and interconnectivity. Systems are synthesized by allocating, connecting, and parameteriz-
ing the components to satisfy the requirements of an application. We present an algorithm that transforms
component-based design spaces, expressible in CoDeL, to an SMT program, which, solved by state-of-the-art
SMT solvers, determines the satisfiability of the synthesis problem, and delivers a correct-by-construction
system configuration. Evaluation results for use cases in the domain of scheduling and mapping of dis-
tributed real-time processes confirm, first, the performance gain of SMT compared to traditional design
space exploration approaches, second, the usability gains by expressing design problems in CoDeL, and
third, the capability of the CoDeL/SMT approach to support the design of embedded systems.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General; C.3 [Special-
purpose and Application-based Systems]: Real-time and embedded systems; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic; J.6 [Computer-Aided Engineering]: Computer-
Aided Design (CAD)

General Terms: Systems specification methodology, Modeling, Design

Additional Key Words and Phrases: Embedded Systems, Components, Satisfiablity Modulo Theory, Design
Space Exploration

ACM Reference Format:
Component-based Synthesis of Embedded Systems using Satisfiability Modulo Theories ACM Trans. Des.
Autom. Electron. Syst. 0, 0, Article 00 (0000), 27 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The task of identifying suitable configurations from large design spaces has been a
challenging problem since the early days of embedded system design. The problem con-
tinues to grow in scope in today’s systems, as they grow in complexity and are embed-
ded into large-scale cyber and physical applications. The extended range of viewpoints
and models that have to be considered pose complex non-trivial trade-offs, dependen-
cies and constraints, which call for powerful tools and strategies to explore the design
spaces, searching for valid system designs.

This work was supported in part by the National Science Foundation under NSF grant number 1136146.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0000 ACM 1084-4309/0000/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

peter
Text Box
pre-print version (March 2015)
to appear in ACM Transactions on Design Automation of Electronic Systems (TODAES)
http://dx.doi.org/10.1145/2746235

http://dx.doi.org/10.1145/2746235

00:2

A plethora of approaches has been proposed to explore the design spaces of embedded
and cyber-physical systems [Gries 2004; Neema et al. 2014]. While many exploration
tools apply optimized problem-specific search algorithms, several tools have also har-
nessed the benefits of well-researched information theoretic solvers, such as Satisfia-
bility solvers (SAT) [Haubelt and Feldmann 2003], Satisfiability Modulo Theory (SMT)
[De Moura and Bjørner 2011], or Integer Linear programming (ILP) [Lukasiewycz
et al. 2008]. In this paper we focus on the application of SMT solvers. SMT efficiently
extends predicate-logic-based SAT solvers with powerful background algebras, which
include standard integer or floating point arithmetic, but also extended mathematical
models to describe, for instance, execution times [Henry et al. 2014], real-time calcu-
lus [Kumar et al. 2013], or control quality [Aminifar et al. 2013]. SMT solvers answer
the stated problems with outstanding performance, without the need for the design
tool developer to implement a solver or a custom design space search algorithm. How-
ever, constructing SMT programs is non-trivial and requires in-depth knowledge of the
mathematical abstraction as well as insight in the workings of the solvers. After all, an
SMT program is still a non-structured set of mostly predicate logic, which limits the
understandability, reusability, and extensibility of the program. Therefore, the chal-
lenge for the system designer shifts from the actual solving of the design problem to
the description (i.e. the construction) of the design space as an SMT program.

To cope with the challenge of constructing SMT programs that solve design chal-
lenges in the embedded system domain, this paper proposes an algorithm to trans-
late design spaces, expressed in a generic high-level component-based description lan-
guage, into SMT programs. In detail we present:

(1) CoDeL: a component-based description language to express applications, require-
ments and building blocks, with their properties, constraints, and connectivity,

(2) synthesis rules that describe how systems are composed from the CoDeL building
blocks, by supporting the concepts of component allocation, component connections
(binding), and component parameterization,

(3) a CoDeL to SMT transformation algorithm, which translates the space of systems
resulting from the CoDeL building blocks to an SMT program.

System

Configuration

System Synthesis
P1 P2 P3

Application,
Requirements,
Constraints SMT

program

CoDeL

Model

- Component selection

- Component binding

- Component parametrization

Translate
SMT

solver

Implementation

Models

compose,

validate, verify,

implement

Hardware models (e.g. IP-XACT, VHDL,SystemC),

Software models (e.g. TinyOS, AUTOSAR, ProCOM)

Physical and dynamic models (e.g. Simulink, Modelica)

represent

CoDeL

Abstraction

Component

G
O
A
L
S

S
Y
S
T
E
M

instantiate

Fig. 1. Overview of the CoDeL/SMT-based system synthesis: The repository of components and the ap-
plication requirements, expressed in the CoDeL language, are translated to an SMT program that can be
solved with existing SMT solvers. The result is a system configuration that can be further analyzed and
implemented.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:3

As a result, designers and tool developers may utilize the SMT performance for
component-based systems that were expressed without the SMT formulation in mind.
As illustrated in Figure 1, we first express the application requirements and the avail-
able set of components with their properties in CoDeL, then translate CoDeL into an
SMT program, which can be solved by SMT solvers to obtain a valid system config-
uration. The system configuration is used to instantiate implementation models, and
to validate, verify, and implement the system. If the detailed validation step discov-
ers failures, standard embedded system design techniques, such as backtracking the
design process, refinement of models, or adding constraints, may be applied to find
correct design points [Gajski et al. 2009].

Since CoDeL applies generic component-based concepts, such as components, in-
terfaces, properties, and constraints, the proposed system synthesis and SMT trans-
formation can represent the attributes of a wide range of existing implementation
languages for embedded systems, describing hardware (e.g. IP-XACT (IEEE P1685)
[Berman 2006], SystemC [Vachoux et al. 2003] or VHDL), software (e.g. TinyOS [Levis
et al. 2005], C, or ProCom [Sentilles et al. 2008]), as well as physical interfaces and dy-
namic systems described in [Simulink 2013] or [OPENMODELICA 2013]. Those lan-
guages already utilize the concept of modules or components and are regularly exposed
to constraint-driven allocation, binding, and parameterization problems. Expressed in
CoDeL and following our proposed translation algorithm, those design challenges can
be answered fully benefiting from the outstanding performance of SMT solvers.

We implemented CoDeL into a prototypical tool that allows its users to express the
CoDeL components with their properties, and link the components to their implemen-
tation model. The tool further applies the CoDeL/SMT transformation algorithm and
invokes the SMT solver Z3 [De Moura and Bjørner 2008] to solve the program and
find one suitable system solution that satisfies the provided system constraints. We
demonstrate the effectiveness of CoDeL/SMT to express, encode, and find suitable con-
figurations for a range of examples including a distributed sensor and actuator control
system. Our experiments confirmed the superior performance of the CoDeL/SMT ap-
proach while the use of CoDeL provides improved usability, reusability, and extensi-
bility of applied components and models.

The rest of this paper is structured as follows. After an overview on related work in
Section 2, we introduce CoDeL and its composition rules in Section 3. In Section 4 we
present the SMT encoding scheme in detail. Results for our prototype tool and a set of
design examples are presented in Section 5. The paper is concluded with a discussion
of the current results and an outlook for future work.

2. RELATED WORK
The exploration of complex design spaces has been a topic of great interest in the
design community for decades, resulting in a variety of overview papers on this mat-
ter [Sangiovanni-Vincentelli and Martin 2001; Gries 2004], capable languages [Feljan
et al. 2009], and tools. Tools such as the BIP (behavior, interaction, priority) framework
[Bourgos et al. 2011], the Octopus toolset [Trcka et al. 2011], or SystemCoDesigner
[Keinert et al. 2009] evaluate design choices for software and hardware early in the
development, apply analytic models, and facilitate the composition and verification of
systems of components. However, the applied methods and languages either provide
only limited support for automated synthesis, or are specifically tailored to address a
certain viewpoint. Our work is intended to be more general so that it can serve a va-
riety of existing component frameworks as abstract component meta-model in which
common design space exploration problems can be addressed. In this regard, the work
in our paper relates generally to the platform based design (PBD) of embedded systems
[Sangiovanni-Vincentelli and Martin 2001]. The goal of PBD is to select and compose

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:4

a subset of available components (the configuration), from the design space of possible
platform configurations. A good and implementable configuration satisfies the system
constraints as well as all component-imposed assumptions.

The correctness of a configuration can be validated in great detail by formal verifi-
cation approaches [De Alfaro and Henzinger 2001a], which capture temporal aspects
of compositions, or validated in complex (co-)simulations [Mühleis et al. 2011]. Such
detailed approaches are essential for good system design, but should be executed af-
ter a configuration was found. Due to exploration time requirements, such approaches
seem not suitable for the exploration of large design spaces, as intended in this paper.
Options to capture the correctness of a system on a higher level of abstraction are inter-
face algebras [De Alfaro and Henzinger 2001b] or design contracts [Damm et al. 2005].
Interface algebras provide a clear semantics on how a system can be composed, and fa-
cilitate a formal assessment of the composability and compatibility of the structure of a
system. Design contracts extend the idea of interface theories and pose a powerful tool
to evaluate the promise-assumption relation between components. The use of design
contracts has been demonstrated in the automotive industries [Damm et al. 2005], for
cyber-physical systems [Derler et al. 2013], and airplane power systems [Nuzzo et al.
2014]. As we will discuss in the next section, CoDeL applies interface algebras and a
general version of design contracts to express the structure and viewpoints of compo-
nents and system.

The exploration of complex design spaces and searching for suitable system con-
figurations is frequently fostered by satisfiability (SAT) solvers [Haubelt and Feld-
mann 2003], Integer Linear Programming (ILP) [Lukasiewycz et al. 2008] and SMTs
[De Moura and Bjørner 2011; Reimann et al. 2011; Liu et al. 2011; Reimann et al. 2010;
Aminifar et al. 2013]. Specifically ILPs have been applied for a variety of design space
explorations and optimizations [Lukasiewycz et al. 2008] for energy-efficient processor
mapping of distributed applications [Gunes and Givargis 2014] or to configure avionic
power systems [Nuzzo et al. 2014]. We considered ILP as alternative for the SMT ap-
proach in this paper. However, the strict requirements for linearity as part of the ILP
rules do not allow to express even simple multiplications (e.g. for the computation of
energy=power × time). ILP modulo theory (IMT) [Manolios and Papavasileiou 2013]
extends ILP with a powerful background theory to solve complex problems, and has
already been proposed to optimize resource planning and synthesis of industrial de-
signs [Hang et al. 2011]. While IMT with its optimization capabilities is an interesting
development, as of today no ready-to-use IMT solvers are available.

Due to their great performance in solving propositional problems, SAT techniques
have been proposed for verification [Schmidt et al. 2013], synthesis [Haubelt and Feld-
mann 2003] and analysis of software systems and electronical systems. As example,
[Haubelt and Feldmann 2003] presented a mapping of the system synthesis binding
problem to Boolean equations that could be solved by SAT techniques. However, the
need to describe SAT programs entirely as conjunctive normal form (CNF) renders
SAT less expressive than ILP and complicates the encoding significantly.

SMTs [De Moura and Bjørner 2011] address the shortcomings of SAT solvers with
the addition of powerful background theories to solve equations expressed as stan-
dard algebra. Advanced background theories reason about the behavior of protocols to
manage shared resources [Liu et al. 2011; Kumar et al. 2013] or execution times of
real-time systems [Henry et al. 2014; Kumar et al. 2013]. As of today many solvers
such as Z3 [De Moura and Bjørner 2008] or OpenSMT [Bruttomesso et al. 2010] as
well as a standardized description language SMT-LIB [Barrett et al. 2013] are avail-
able. SMT has been discussed for a variety of synthesis and analysis applications in the
embedded systems domain. For instance, [Reimann et al. 2011] described a platform-
based synthesis of real-time systems with a highly optimized timing analysis. [Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:5

i1

C1

//Relations:

X:=4

Y:=2+i1.V

//Assumptions:

X<Y

i2

C2 V:=3

used

interface provided

interface

component

binding property model

Fig. 2. Core elements of the component model: Component C1 has one used interface (i1), one provided
interface (i2). Properties of C1 are described by two relations and one assumption. Connecting component
(C2) using the i1-interfaces sets the values of variables in scope of C1 (i1.V=V of C2) so that the assumption
(X<Y) can be satisfied.

et al. 2011] applied SMT to solve mapping and scheduling of tasks on multi-processor
systems. [Kumar et al. 2013] presented an SMT solver that applies a real-time calculus
as background theory. The real-time calculus computes arrival curves for constrained
resources, expressed in a very specific encoding scheme for this single use case. The
background theories presented in those works are important for future use of SMT
and can be applied in the property model of CoDeL. However in all those works, the
actual SMT program is still an unstructured set of assertions, which limits the appli-
cability and reusability.

To improve and simplify the programming of ILP and SMT solvers, several works
proposed alternative programming styles and languages. For ILPs, languages such
as AMPL (A Mathematical Programming Language) [Fourer et al. 1989] or the more
expressive GAMS (General Algebraic Modeling System) [Bussieck and Meeraus 2004]
help to express the program as a set of well-defined mathematical expressions. Other
approaches such as [Sheard 2012] and [Agarwal and Karkare 2013] advocate for the
expression of SMT problems as part of regular programming languages, which provide
a classic programming interface instead of assertion-based definitions of the SMT-LIB.
Such languages indeed help to improve the accessibility of ILP and SMT, while the
added support to formulate the problems is still limited. For embedded systems design
we need a translation from the component-based design space to the mathematical
and assertion based expressions as provided by SMT, ILP or GAMS. For this purpose
we describe the generic component description language CoDeL in the next section,
and show the translation of the component model into an SMT program in Section 4.

3. COMPONENT-BASED SYSTEM MODEL
In this section we introduce the CoDeL component and system model and its graphical
notation. We further discuss the resulting design space, which supports the design
variabilities component selection, component binding, and parameterization.

3.1. Component Model
For the underlying data structure of CoDeL, we apply a lightweight component model.
Components are the building blocks of the system. Each component represents a char-
acteristic functional behavior, which may be the behavior of a software module, a hard-
ware module, or a model of the environment. A component c is represented by the
triplet c = (M, I,P), where M represents meta information, I the interfaces, and P the
property model of c. M contains descriptive data about c including its name, possible
links to implementation and simulation models for the component.

Figure 2 shows a graphical representation of two components C1 and C2. Each com-
ponent is represented as a box with a name (C1 and C2), a property model (the box
in the component), and the interfaces (triangles). In the following we introduce the
interface model and the properties model, using components C1 and C2 from Figure 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:6

3.1.1. Interfaces and Bindings. Components provide their functions, services and proper-
ties to other components via interfaces. Reciprocally, interfaces are used to connect to
other interfaces in order to use their functionality. The set of interfaces of a component
are described with the tuple I = (IP , IU), where IP is the set of interfaces provided by
the component, and IU is the set of used (needed) interfaces. In Figure 2, C1 uses the
interface named i1 and provides the interface i2. In the graphical notation of CoDeL,
the used interfaces are illustrated as triangles that point toward the component, the
provided interfaces are triangles pointing away from its component.

A binding βi,j is a connection between two interfaces i ∈ IP and j ∈ IU , while i ∼= j.
The compatibility operator ∼= means that i and j are the same type and i provides a
compatible interface to the interface used by j. The compatibility operator is in ac-
cordance with interface algebras [De Alfaro and Henzinger 2001b] and can be offline
computed based on extended functional and state-based reasoning. The set of all pos-
sible bindings of a design space is noted as B throughout the paper, while BS notated
the set of bindings active in the current system. A solid line between two components
shows an active connection between the two interfaces, while a dashed line illustrates
the possibility of a connection. Figure 2, shows a possible binding between i1 and the
output interface provided by C2.

3.1.2. Properties. The property model P is a declarative model of the properties of the
components. A property describes a characteristic or quality of the component. Prop-
erties comprise all aspects of a system that can be expressed by data types, including
all sorts of attributes, to describe the system, its components, its requirements, or its
environment. The declarations as part of the property model contain relations and as-
sumptions, so that we can express the property model as a triplet P = (P,R,A), with
properties P , relations R and assumptions A. In the graphical notation, the property
model is shown as a separate text box within the component.

A Property p ∈ P is a typed variable. p can be of a basic type such as Boolean, string,
integer, or floating point number, but also an extended data type such as a set, vector, or
a scheduling arrival curve [Kumar et al. 2013]. The types are not freely programmable,
but defined by the available set of background algebras in the underlying solver.

Relations R assign the result of an operation over a set of input properties or con-
stants to a property. The operations can be standard arithmetic, logic, and condi-
tional operations, but also complex background-theory-specific operations, such as set-
theoretic operations, or the aggregation and comparison of scheduling arrival curves.
As a small example, component C1 in Figure 2 contains two relations on integer data
types: X := 4 and Y := 2 + i1.V . The first relation assigns the value 4 to the property
X. The second relation assigns the sum of 2 and the variable i1.V to the property Y,
The usage of i1.V in C1 already indicates that properties can be defined in context of
the composition. By binding C2 to the interface i1 of C1, the properties of C2 become
available in the scope of C1. Forwarding of variables via bindings facilitates reasoning
about component properties in the context of the system composition.

Assumptions are similar to relations as they compute a function over a set of input
properties. However, the result of an assumption is a Boolean which is not assigned to
a variable, but it is evaluated to determine the correctness of the system. The overall
goal of the system synthesis is that all assumptions of a system are satisfied, in other
words they evaluate to true. In Figure 2, C1 contains one assumption, which is X < Y.
Property X is defined as 4, while Y has to be evaluated in context of the binding. Due
to the binding i1.V is defined by C2 as 3, so that Y is 5, which resolves the assumption
to be satisfied.

In addition to standard algebraic terms, which can be directly processed by a solver,
CoDeL supports macro operations and complex interpreted functions. Macro opera-

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:7

tions, such as each(interface):R, do not extend the expressiveness but reduce the
complexity of P by applying a relation (R) or assertion to a set of properties or inter-
faces (i). Macros are, for instance, utilized in the scheduling example shown later in
Figure 5.

3.2. Design Space and System Synthesis
The system synthesis relates to the composition of a system implementation (S) from
a pre-defined repository of available components (C). The system implementation con-
tains a set of selected components CS ⊆ C, the set of bindings BS between the inter-
faces of the selected components, and the parameterization of the properties of CS .
The design knobs in this design space are selection, binding, and parameterization of
components:

Component Selection addresses the selection of the subset CS from the set of avail-
able components C is called component selection. Therefore, the selection step decides
whether an available component used as part of the composed system or not.

Binding addresses the selection of active bindings BS ⊆ B from the set of possible
connections between components (B). The selection is influenced by a range of struc-
tural (each j ∈ IU must be connected not more than one; adjacent components Ci and
Cj must be ∈ CS), and over-functional constraints, since each active binding propa-
gates properties to adjacent components. A common use case in the embedded system
design that involves binding is the mapping of processes to resources, such as memory
or processing units (PUs). Such an example is in detail discussed in Section 5.3. We
discuss bindings in detail in section 4.2.

Parametrization concerns the definition of variable properties (p ∈ P) of the property
model of CS . Such variable system properties are, for instance, the update frequency
of a protocol, which directly influences the energy consumption of the system, but also
the quality of service. Another example for the parameterization issue in embedded
system design is the planning of periodic real-time schedules. The example shown in
Section 5.2 assigns start times of a schedule in order to satisfy the timing constraints.

Parametrization made for one component may propagate through the system com-
ponents (CS) via the active bindings (BS). Therefore, to solve the resulting design
problems, capable solvers are needed that additionally to the propositional logic for
components and bindings have the ability to process a set of equations that express in-
equalities and equalities over a set of variables. SMT solvers contain such a solver as
part of their background theory, which makes them a promising tool for the exploration
of design spaces that contain parameterization problems.

3.3. Expressiveness and Application of CoDeL
In this subsection we discuss the abilities and limitations of CoDeL to express struc-
tural and over-functional attributes of the embedded system. We further discuss the
general application of CoDeL. As introduced earlier in this paper, CoDeL is a generic
component description language with a very condensed set of semantic features.
CoDeL represents hardware and software components as well as physical interfaces
and systems, described in different implementation languages. The main purpose of
CoDeL, as presented in this paper, is to define a suitable abstraction between imple-
mentation model languages and the capabilities of formal solvers. Therefore such a
language must:

(1) capture the structure of the design space and its components,
(2) allow the expression and evaluation of important over-functional properties,
(3) provide a good usability and reusable concept,
(4) be evaluated efficiently and can be encoded in solver languages.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:8

While the last item will be addressed in the SMT encoding in the next section, we
discuss CoDeL’s support for the first three items in the following paragraphs.

3.3.1. Expression of Structure. With the ability to model components (blocks, modules),
interfaces (ports), and bindings (connections) CoDeL represents the standard concepts
of today’s design tools to describe the structure of systems. In our experiments compo-
nents were modeled originating from design languages and tools like C, TinyOS, Sys-
temC, VHDL, Simulink. Most of the languages already support a well-defined compo-
nent and interface model, or (as for C) are suitable to add meta-information to express
components (or modules). Therefore, CoDeL supports basic stateless interface algebras
as described [De Alfaro and Henzinger 2001b] to validate the structural correctness of
a composed system, including the validity of composition of two components (C1‖C2),
and connection of two interfaces (i1‖i2). To evaluate the compatibility and compos-
ability of interfaces and components in greater detail, CoDeL implements a functional
variant of design contracts [Damm et al. 2005]. Design contracts assume that two com-
ponents C1 and C2 with their contract data as part of the information Mi = (Pi, Ai) can
be composed (C1‖C2) if A1 ⊆ P2 and A2 ⊆ P1, meaning that all assumptions of a com-
ponent are delivered by promised properties by the peer. A system S of components is
free of conflicts if the aggregated set of assumptions is satisfied by the aggregated set
of proposed properties: ⋃

component c∈S
Ac ⊆

⋃
component c∈S

Pc.

Since each assumption can be expressed as function fa : P → true iff a ∈ P , a system,
expressed in CoDeL is free of conflicts if

∀a ∈ As : fa(p∗ina) = true,

where p∗ina ⊆ P is the subset of relevant system properties to evaluate fa. In theory,
this formalism allows us to analyze the compatibility of complex dynamic interface
descriptions like the interface automata proposed by [De Alfaro and Henzinger 2001a].
However, modeling and analyzing system details on this low level of granularity is not
the primary concern of CoDeL, since such details would violate our requirement (4),
i.e. the efficient evaluation. Instead, we can evaluate the compatibility of interfaces
(i1 ∼= i2) offline and store the information as part of the component model.

3.3.2. Expression of over-functional attributes. The assumption-based evaluation of de-
signs is not only suitable to assert the constraints of the structure, but also to reason
about over-functional attributes of the system. In the examples in Section 5 we show
how CoDeL can model timing, schedulability, shared resources, and control quality.
In the context of design contracts, the high-level system analysis has been success-
fully applied for systems ranging from automotive [Damm et al. 2005], avionic [Nuzzo
et al. 2014], to general cyber-physical system systems [Derler et al. 2013]. Other static
high-level analysis approaches, e.g. spreadsheet analysis, have been successfully ap-
plied to model industrial systems [Trcka et al. 2011], general worst-case execution
times [Henry et al. 2014; Lednicki et al. 2013], power consumption [Gunes and Gi-
vargis 2014], system security [Peter et al. 2008], and scheduling [Zhang and Burns
2009; Zhu et al. 2012]. This enumeration is not conclusive but indicates the suitabil-
ity of equation-based approaches to estimate and analyze over-functional properties of
systems in practice.

Within CoDeL the following approaches are supported to model and evaluate static
and dynamic properties of systems:

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:9

— Static resolution or approximation of dynamic behavior: This is one standard ap-
proach for high-level abstraction to assess system properties in related work, as
listed above. The idea is to express system properties of interest as equations, which
can be efficiently evaluated in many tools. Disadvantage is a lack of accuracy in the
models that may result in an over- or under approximation of properties.

— Enumeration of all possible states, as proposed by [Nuzzo et al. 2014]. The system
is correct if no conflict can be found for any state. While theoretically very powerful,
state-explosion renders this approach infeasible for most cases.

— Design of a viewpoint-specific algebra (VSA): VSAs facilitate the equation-based
computation with complex data types, but require a algebra-specific background
computation in the solver. As one example, [Kumar et al. 2013] showed how a real-
time calculus can be integrated as a background theory in an SMT, where Prop-
erty variables express scheduling arrival curves (a1, a2, ...) that can be aggregated
(aS =

∑
i ai). Resource constraints are expressed as service curve (sC), and con-

straint with the assumption aS ≤ sC in CoDeL. Other examples for VSA are com-
posable security [Martin et al. 2014] or execution times [Lednicki et al. 2013].

— Invoking complex executable models: Executable models (e.g. in Simulink) or im-
plementation models, can be invoked to evaluate complex properties. As example,
our evaluation tool, discussed in Section 5.1 can invoke complex Simulink simula-
tions as black boxes, for instance to assess the quality of a parameterizable control
system. The result is accurate, but usually expensive in terms of computation time.

While all four approaches are supported by CoDeL and in current SMT solvers, the
static models are preferable, due to their performance advantage. However finding and
expressing good static models for over-functional properties of systems is not trivial,
and therefore needs the creativity of knowledgeable domain experts, as well as a tool
infrastructure that fosters reusability of models.

3.3.3. Application of CoDeL. The application of CoDeL is separated into two phases: a
set up phase of the component repository and the actual design synthesis phase.

The setup phase is ideally supported by component information that are already
available as part of the implementation model. This is generally possible for struc-
tural information, but also over-functional properties, such as WCET and memory
consumption. Most over-functional models, however, require domain experts to be de-
signed correctly. As example, we need control experts to express models for complex
dynamic behaviors, battery experts to model batteries used by the systems, software
engineers to model properties of their software modules, and hardware designer for
hardware components. Important in this context is reusability. Once described, even
by third-party domain-experts, the models should be reusable and extensible within
the system and for future systems. In Section 5.4.1 we discuss this issue for a model
to assess the control quality. From organization perspective, the reusability requires
a management structure to develop, store and describe models and components, and
an extended component semantics that goes beyond the generic component model dis-
cussed in this paper. The organization challenge is not in focus of this paper but re-
quires additional studies in future work.

In the actual design phase, CoDeL supports manual design by analyzing pre-
configured configurations, or automatically search of the design space for suitable con-
figurations. For a model instance with allocated components (CS), bindings (BS) and
parameterization (PS), the configuration can be evaluated with an evaluation function
eval(S(CS , BS , PS) → {true, false}, which is true if all interface requirements and all
assumptions are satisfied. The evaluation function, which can be solved by dedicated
solvers, is the core functionality for the automatic search. The search is initialized with
an incomplete description of S, expressing the invariant components, bindings and pa-

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:10

C1
delay < 8

SA delay:=5 SB delay:=9

sensor

sensor sensor

ALGORITHM 1: SMT program for Example 1
declare-const C1, SA, SB Bool //(R1)
declare-const C1.sensor,SA.sensor,SB.sensor Bool
declare-const delay Int
Imply(C1, delay<8) //(R2)
Imply(SA, delay=5)
Imply(SB, delay=9)
C1=C1.sensor //(R3)
SA=SA.sensor; SB=SB.sensor
Imply(C1.sensor, SA.sensor or SB.sensor) //(R4)
C1=true

Fig. 3. CoDeL diagram and SMT program for Example 1: Component C1, has a timing assumption and
uses the sensor interface. Sensors SA and SB provide the service but have different delay properties.

rameters of the system. Usually the initial system contains a main or top component,
system constraints, parts of the hardware platform, and the physical environment. The
search uses a repository of components for allocations, bindings and parameterizations
as introduced in the previous subsections. Since the complexity of the design space pro-
hibits exhaustive search in most cases, advanced reasoning and conflict analysis are
standard approaches to reduce the size of the practical design space. As outlined in the
related work, many approaches exist to perform the final search. To solve the search
with SMT solvers we propose an algorithm to encode a CoDeL to an SMT program in
the next section.

4. CODEL TO SMT TRANSFORMATION
In this section we show how to encode the CoDeL-defined design space, including its
components, their properties and constraints, to an SMT program. We start with a
small straightforward component encoding. This first step also illustrates the basic
operations of an SMT solver. The second part of the section then explains the encod-
ing of the bindings between components and the propagation of variables between
components. This section concludes with the complete algorithm that translates the
component-based design space into the SMT program. The code examples for the rules
in this section are based on the SMT2 library standard [Barrett et al. 2013]. To improve
the readability, we changed the prefix notation of the algebraic terms to a standard in-
fix notation. The rules are annotated as R1 to R8 for reference throughout this paper.

4.1. Component Encoding
As first step we show how to encode the components and their properties. For this
purpose we use a small example (Example 1), shown in Figure 3. Example 1 shows
the three components C1, SA, and SB. We can assume C1 is a control component that
needs input from a sensor. The design space in Example 1 offers two sensors (SA and
SB), while SA has a delay of 5 and the delay of SB is 9. In this paper, and without loss
of generality, we use milliseconds as the unit for the delay.

The basic strategy of the component encoding is to express the instantiation of a
component as a Boolean variable. In Example 1, the variable C1 is true if component
C1 is instantiated in the target design, and C1 is false if C1 is not part of the target
design. Therefore, in Example 1 three conditional variables C1, SA, and SB define the
component design space. Using SMT-LIB syntax, the three variables are defined as:

declare-const C1 Bool (R1)
declare-const SA Bool
declare-const SB Bool

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:11

Relations and Assumptions: In SMT, relations and assumptions of the components,
which are in turn equations, do not need special encoding, because the underlying SMT
theory can solve the algebraic terms as is. For instance, for the statement delay=9, the
solver assigns the value 9 to the variable delay. If the program contains another uncon-
ditional definition of delay, such as delay<8, the solver returns UNSAT. Conversely, if
the second statement is delay>8, the solver returns SAT, since delay>8 and delay=9 do
not impose a conflict. Such algebraic statements can be conditional or part of a larger
statement. For this operation we use the SMT operation Imply. Imply(x,y), means that
y must be true if x is true. Both, x and y, may be complex terms on their own.

In our component model we use SMT’s Imply facility to activate relations and as-
sumptions whenever the component is enabled as part of the target design.

Imply(component, relation AND assumptions)

means that the relations and assumptions have to be true (i.e. satisfied) if the compo-
nent is enabled. In Example 1 we can write:

Imply(C1, delay<8) (R2)
Imply(SA, delay=5)
Imply(SB, delay=9)

It should be noted that before those statement, the variable delay, like all variables,
has to be declared:

declare-const delay Int

Applying the rules discussed thus far, we can proceed to solve the program as follows.
First, we set the initial requirement (C1=true), and then we check the satisfiability. The
commands are

C1=true
check-sat

which are also part of the SMT program.
The SMT program we defined so far is executable and satisfiable, but does not neces-

sarily return the expected result. The solver may assign the value of 0 to the delay and
disable both sensors, which still satisfies all assumptions. This is caused by the miss-
ing expression of possible bindings between the components. Therefore, we describe
the interfaces and possible connections next.
Interfaces: Interfaces in the SMT program are expressed as binary variables, because
an interface is either part of the system or is not part of the system. Since interfaces
are fixed to their components, we can express the equivalence relation between the
interface and its component, which means that the interfaces of the component are
part of the design, if and only if the component is active as well. The corresponding
SMT statements for Example 1 are:

C1=C1.sensor (R3)
SA=SA.sensor
SB=SB.sensor

Utilizing the interfaces, we rephrase the dependency between C1 and the sensors:
Imply(C1.sensor, SA.sensor or SB.sensor) (R4)

which means that the sensor interface from C1 requires at least one sensor interface
provided by SA or SB. This completes the rules needed to encode Example 1. The
resulting SMT program for Example 1 is shown as Alg. 1. The program delivers the
expected result, i.e. the solver returns SAT, and output the following result: C1 and SA
are enabled, and the delay is 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:12

4.2. Bindings
With the encoding rules discussed so far we can encode very simple systems, such as
Example 1. More complex designs, however, require additional rules, in particular to
address the binding between components. Example 2, shown in Figure 4, illustrates
the binding issue. In Example 2, C1 represents a control algorithm that uses the input
of two sensors. C1 has been specified for a combined input delay of 10 to 15. The second
sensor must be faster than 8.

Key in the encoding of the bindings is the computation of all possible bindings be-
tween the components of the design space. For all possible bindings between two inter-
faces i, j, i ∼= j we create one propositional variable βi,j . This variable βi,j is true if the
binding is active, which means that the interfaces are connected. Figure 4 illustrates
the binding variables as β11, β12, β21, and β22.

Naturally, bindings require adjacent interfaces to be present. We can express this
dependency in SMT as:

Imply(β11, C1.s1 and SA.s1) (R5)
Imply(β12, C1.s1 and SB.s1)
Imply(β21, C1.s2 and SX.s2)
Imply(β22, C1.s2 and SY.s2)

Notably, the implication of the presence of the interfaces as a function of the binding
redefines the feasible design space. So far we considered the design space to be defined
over the combinations of components. Instead, due to the equivalence relation between
the presence of the component and its interfaces (e.g. C1=C1.s1), an active binding
enables not only the adjacent interfaces but also the components and their properties.

To the set of rules, discussed so far, we further add two rules to ensure that, first, all
required used interfaces IU have a connected peer, and second, that each used interface
IU is connected to not more than one peer interface.

In Example 2, the first rule is needed to ensure that the used interfaces s1 and s2 of
component C1 do not connect to more than one sensor each. In the SMT program this
can be described by:

Imply(C1.s1, β11 or β12) (R6)
Imply(C1.s2, β21 or β22),

extends and replaces the interface-based dependency rule R4.
Using a second rule, we ensure that the used interface is not connected to more than

one interface, i.e.. if β11 is enabled, β12 must be disabled, which is expressed as:
Imply(β11, not β12) (R7)
Imply(β21, not β22)

Variable forwarding: As introduced in Section 2, the bindings in CoDeL are the
mechanism to connect components, but also forward property variables from one com-
ponent to a connected component. By forwarding property variables, components learn
about the properties of the connected components. The accessed properties then can be
validated or processed to update the own properties. The principle of variable forward-
ing was already introduced in Figure 2, where the variable v was forwarded to the
i1 interface of component C1. To encode the variable forwarding for the entire design
space the following two questions must be addressed: first, how to identify and manage
compatible variables, and second, how to realize the conditional forwarding.

For the variable encoding we introduce scopes to express the host component of each
property variable. Therefore, the five delay variables of Example 2, are expressed as
five distinct variables (C1.delay, SA.delay, SB.delay, SX.delay, and SY.delay). Addition-
ally, each component can access variables of connected components via the interface
that is used for the binding. The interface can be considered as another internal scope

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:13

C1 delay := s1.delay + s2.delay

delay < 15

delay > 10

S2.delay < 8

SA delay:=5

SB delay:=9

SX delay:= 5

SY delay:=9

s1 s2

ß21ß22ß11

ß12

s2

s2

s1

s1

ALGORITHM 2: SMT program for Example 2
Imply(SA, SA.delay=5) //(R2)
Imply(SB, SB.delay=9)
Imply(SX, SX.delay=5)
Imply(SY, SY.delay=9)
Imply(C1, C1.delay=C1.s1.delay+C1.s2.delay)
Imply(C1, C1.delay<15)
Imply(C1, C1.delay>10)
Imply(C1, C1.s2.delay<8)
C1=(C1.s1 and C1.s2) //(R3)
SA=SA.s1; SB=SB.s1; SX=SX.s2; SY=SY.s2
Imply(β11, C1.s1 and SA.s1) //(R5)
Imply(β12, C1.s1 and SB.s1)
Imply(β21, C1.s2 and SX.s2)
Imply(β22, C1.s2 and SY.s2)
Imply(β11, not β12) //(R7)
Imply(β21, not β22)
Imply(C1.s1, β11 or β12) //(R6)
Imply(C1.s2, β21 or β22)
Imply(β11, C1.s1.delay=SA.delay) //(R8)
Imply(β12, C1.s1.delay=SB.delay)
Imply(β21, C1.s2.delay=SX.delay)
Imply(β22, C1.s2.delay=SY.delay)
C1=true

Fig. 4. Example 2.: Component C1 uses two sensor interfaces s1 and s2. For both types of sensor two
alternative sensors are available, which results in four possible bindings (β11 − β22). The assumptions in
C1 allow the combination SB and SX (via β12 and β21) as the only conflict-free design..

of the components. In Example 2, component C1 can access all properties of the com-
ponent, that is connected via interface s1, in the scope C1.s1. Accordingly the property
names in the relations and assumptions from the property model are renamed, which
has to be reflected within a refined Rule (R2). As example, the first relation in C1 is

C1.delay:=C1.s1.delay+C1.s2.delay,

and the updated SMT instruction following rule (R2) is
Imply(C1, C1.delay:=C1.s1.delay+C1.s2.delay)

Applying the concept of the scopes, a binding simply forwards the local variables to
the interface of the connected component. In case component CX is connected to CY via
interface iy, the set of relations that describe the forwarded variables (F) is expressed
as

F =
⋃

v∈CY.P

relation(CX.iy.v := CY.v),

resulting in a set of relations that forward all variables of CY into to the scope CX.iy of
CX. With the knowledge of the actually used variables within CX, the set of relations
can be reduced to only relevant variables. However, one strength of SMT solvers is
the efficient handling of unused variables, so that in our experiments we could not
measure a performance penalty for forwarding all variables.

The conditional variable forwarding is realized with an implication rule that as-
serts the correctness of the generated relations (F) only if the corresponding binding
is active. For Example 2 the resulting variable forwarding instruction in SMT are ex-
pressed as:

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:14

ALGORITHM 3: Generation of the SMT program from a component repository
Input: system repository C

1 //Generate Bindings
2 foreach used interface i ∈ IU in C do
3 foreach provided interface j ∈ IP in C do
4 if i ∼= j then B ← B ∪ βi,j
5 end
6 end
7 //add binding rules
8 foreach possible binding β ∈ B do
9 SMT add implication(β, β.IU AND β.IP) //(R5)

10 F=forward shared variables(β)
11 foreach relation f ∈ F do SMT add implication(β, f) //(R8)
12 //prevent double assign of used interfaces //(R7)
13 for each possible binding β2 ∈ B do
14 if β.IU = β2.IU then
15 SMT add implication(β, not β2)
16 end
17 end
18 end
19 for each component c ∈ C do
20 //add component properties,relations,assumption
21 for each property p in c.P do
22 SMT define variable(p) //(R1)
23 foreach relation r ∈ c.R ∪ c.A do SMT add implication(c, r) //(R2)
24 end
25 end
26 //add interface rules
27 foreach interface i ∈ c.I do
28 SMT add assertion(c = i) //(R3)
29 //require binding for used interfaces //(R6)
30 if i ∈ IU then
31 o = ∅
32 foreach β ∈ B do if β.IU = i then o← o ∪ β
33 SMT add implication(i, OR conjunct(o))
34 end
35 end

Imply(β11, C1.s1.delay=SA.delay) (R8)
Imply(β12, C1.s1.delay=SB.delay)
Imply(β21, C1.s2.delay=SX.delay)
Imply(β22, C1.s2.delay=SY.delay)

Applying the binding rules and variable forwarding rules, discussed in this section,
we can conclude the SMT program and solve Example 2. The resulting SMT program
without variable definitions is shown in Alg. 2. The solver confirms the satisfiability
(SAT) of the problem with the following assignments: bindings β12 and β21 are en-
abled, components C1, SB, and SX are enabled, and the delay in component C1 is 14.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:15

4.3. CoDeL to SMT Encoding Algorithm
In the previous subsections we discussed the rules to encode the component-based de-
sign space for two small examples. In the following, we present the general algorithm
that applies the SMT encoding rules to all design spaces that can be expressed with
the component model. The algorithm has the following inputs and outputs:
Input: Repository of components C; each componentCi with its set of used and provided
interfaces (Ip, Iu) and its property model P. Additionally given is a start set of compo-
nents CS ⊆ C containing abstract functions and invariable platform components.
Output: An SMT program expressing the design space and the requirements.

The resulting algorithm generate_SMT is shown as Alg. 3. The rules for the algorithm
were discussed in the previous subsections. The steps in the algorithm are annotated
with the rule numbers R1-R8 (R4 was overruled by R5). Beside the basic rules, the
algorithm uses the following steps and external methods: In line 1 to 6 of Alg. 3, the
set of possible bindings is created. The method SMT_add_implication, which is used in
line 9, 11, 15, 23, and 33, adds an implication (Imply) instruction, SMT_add_assertion
(line 28) adds an unconditional assertion, and SMT_define_variable add the definition
for a variable into the SMT program. Method forward_shared_variables (line 10) gen-
erates the set of relations (F), that forward component variables to the corresponding
interface scope of the connected component, as described for rule (R8) in the previous
subsection. The resulting set F of forwarding relations is added as implied assertions
in line 11. Method or_conjunct(x) (Line 33) conjuncts the members of the set o with
an OR operation, which is needed for the computation of the allowed bindings for a
used interface (Rule R6).

The complexity of Alg. 3 is determined by the number of possible bindings. For n
interfaces, in the worst case, the set B contains n2 bindings. Since this set is checked for
incompatible bindings (Line 13-16), in the worst case the complexity of the algorithm
is O(n4). In practice, even for large examples as discussed in the next section, the SMT
programs could be generated in few seconds as we will discuss in detail in the next
section.

5. EXAMPLES AND EVALUATION
The goal of the evaluation, presented in this section, is to demonstrate the suitability of
CoDeL and the SMT transformation algorithm to address important challenges in the
design of embedded systems. Specifically we consider the following desirable criteria:

Usability of SMT for system designers. The motivation is to show that our approach
is easier to apply than traditional SMT description techniques for systems.

Expressiveness: demonstrate the suitability of CoDeL to state and process non-trivial
structural and over-functional system properties.

Reusability and Extensibilty: possibility to apply independently developed models
and components to compose complex systems in an iterative design effort.

Scalability of the SMT transformation algorithm and the performance of the search
for suitable system configurations.

To discuss the criteria, we present four use cases, which each highlight a specific
aspect of our approach:

(1) Job Scheduling (Section 5.2) discusses a very simple scheduling encoding and com-
pares the manual SMT encoding to the generated results. The example addresses
the criteria usability and extensibility, and facilitates a direct comparison of the
generated SMT program to a manual encoding.

(2) XGRID (Section 5.3) demonstrates process mapping for a many-core architecture.
The use case shows in detail how software mapping and hardware configuration

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:16

can be solved in SCT, and addresses the concerns reusabilty of components and
scalability. Further, XGRID facilitates a comparison against a state-of-the-art ILP
encoding.

(3) Inverted pendulum (Section 5.4.1) is a small example that focuses on the expressive-
ness. The example shows in detail the modeling options for one real-time control
subsystem. Then pendulum is one part of the larger fourth example.

(4) Distributed control systems (Section 5.4.2) is a mapping use case of several con-
currently executed real-time control applications one a distributed platform. Be-
sides reusability, the example mainly addresses scalability. We apply the example
to compare the SMT performance to alternative search methods.

Before the detailed description of the examples we briefly introduce our design tool
which we applied for the evaluation. A discussion of the gathered results concludes
this section.

5.1. Evaluation Tool
For evaluation purposes, we implemented a tool, System Configuration Toolkit (SCT)1.
SCT allows the designer to express the components, as described in Section 3 of this pa-
per, and presents the resulting design space graphically. We can create, load, and con-
nect the components, manage a component repository, in the graphical notation used
throughout this paper, or in the underlying XML format. For the experiments, struc-
tural and property models of the components examples have been manually added.
For extended analysis of over-functional properties we can invoke external models in
Matlab directly.

For the modeled components, SCT performs SMT encoding as described in Alg. 3,
and instantiates the SMT solver Z3. In addition to the instantiation of the SMT solver,
SCT also employs classic design space exploration techniques, such as tree search and
conflict-analyzing tree pruning techniques [Zhang et al. 2001]. We will briefly compare
the three applied techniques in Section 5.4.2.

Applying SCT, in the following subsections, we discuss the stated design exper-
iments. All measurements were obtained without parallelization on a 3GHz i7-
processor equipped PC.

5.2. Use Case: Job Scheduling
The job scheduling use case concerns offline planning of task schedules for real-time
systems. For comparison we use a small example system presented by [De Moura and
Bjørner 2011]. The example considers three jobs J1, J2, J3. Each job consists of two
sequential tasks running on two processing units respectively. It is assumed that the
jobs share the PUs. dj,m annotates the time needed for the job j for its task m running
on the PU. In this example d1,1 = 2, d1,2 = 1, d2,1 = 3, d2,2 = 1, d3,1 = 2, d3,2 = 3. The
question is, can the three jobs be scheduled so that they finish within 8 time units? De
Moura presented a small SMT program which solves the problem:

t1,1 ≥ 0 ∧ t2,1 ≥ 0 ∧ t3,1 ≥ 0 ∧ 8 ≥ t1,2 + 1 ∧ 8 ≥ t2,2 + 1 ∧ 8 ≥ t3,2 + 3∧
t1,2 ≥ t1,1 + 2 ∧ t2,2 ≥ t2,1 + 3 ∧ t3,2 ≥ t3,1 + 2∧

(t1,1 ≥ t2,1 + 3 ∨ t2,1 ≥ t1,1 + 2) ∧ (t1,1 ≥ t3,1 + 2 ∨ t3,1 ≥ t1,1 + 2)∧
(t2,1 ≥ t3,1 + 2 ∨ t3,1 ≥ t2,1 + 3) ∧ (t1,2 ≥ t2,2 + 1 ∨ t2,2 ≥ t1,2 + 1)∧
(t1,2 ≥ t3,2 + 3 ∨ t3,2 ≥ t1,2 + 1) ∧ (t2,2 ≥ t3,2 + 3 ∨ t3,2 ≥ t2,2 + 1)

(1)

1SCT and the examples are available for download from http://tiny.cc/sctool

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:17

J1
t2.start>=t1.end

start=t1.start

end=t2.end

Top

start>=0

start=min(j1.start, j2.start, j3.start)

end=max(j1.end, j2.end, j3.end)

end<=8

J3
t2.start>=t1.end

start=t1.start

end=t2.end

J2
t2.start>=t1.end

start=t1.start

end=t2.end

t1

t1

t1

t2

t2

t2 T32
d:=3

end:=start+d

T22
d:=1

end:=start+d

T21
d:=3

end:=start+d

T12
d:=1

end:=start+d

T11
d:=2

end:=start+d

T31
d:=2

end:=start+d PU2
Each(in,in):($0=$1

or $0.start>=$1.end

or $1.start>=$0.end)

PU1
Each(in,in):($0=$1

or $0.start>=$1.end

or $1.start>=$0.end)

Fig. 5. CoDeL description of the De Moura’s scheduling use case. The top component initializes three jobs
(J1..3), which each use two tasks each (T11..T32), which are mapped to two processing units.

In Equation (1), tj,t represents the start time for the task t for job j. This example
shows the strength of SMT in combining propositional logic and standard arithmetic.
Modern solvers solve the program instantaneously, returning the solution
t1,1 = 5, t1,2 = 7, t2,1 = 2, t2,2 = 6, t3,1 = 0, t3,2 = 3. While Equation (1) delivers the
correct result the equation is not intuitively to derive or maintain. For comparison we
express the same example in CoDeL. Based on the component-oriented understanding
of the system (tasks, jobs, process units), an representation of the system in CoDeL
is shown in Figure 5. Figure 5 shows the jobs (J1..J3), the tasks (T11..T32), and the
two PUs. Each component only expresses relations and assumptions important in the
scope of the component. The jobs only ensure that their task 2 starts after task 1 is
finished. The top component sets the assumption that all tasks finish within 8 time
units. The PUs ensure that for each pair of tasks only one is active at the same time.
SCT encodes the system following the rules stated in Alg. 3, and after executing the
SMT solver we obtain a parameterized start variable for each task.

Within SCT the design of this example is further supported by loadable templates
of jobs, tasks and PU, which only need to be parameterized, while tasks are linked to
actual software code and PUs to hardware modules. We discuss the performance as
well as the usability of the example in more detail in Section 5.5.

5.3. XGRID
The XGRID many-core architecture [Gunes and Givargis 2014] requires the mapping
of software processes on a reconfigurable hardware platform. In this subsection we
show how we can express the problem in CoDeL and compare the results of our ap-
proach to the ILP solution presented by Gunes.

XGRID is an embedded many-core processor platform that integrates processing
cores and an FPGA-like interconnection network. XGRID uses rows and columns of
buses with programmable switching fabrics at the intersections of the row/column
buses to route input/output of logic-blocks. The XGRID interconnect is compile-time
configurable for a specific software application. An instance of the XGRID intercon-
nection network with two rows and two columns is shown in Figure 6 A). The figure
shows two row and column buses (rails) in the interconnect network, represented as
thick lines. Appropriate switches (shown as X boxes) need to be set to establish a com-
munication channel between a pair of cores.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:18

P1

P2

P3

P4

XX

X

X

X

Core 1 Core 2

Core 3Core 4

X13

X12

X34

X23

C2

C3C4

X14

C1

P2 P4P1

P3

switch

(B) KPN(A) XGRID

map

map map map
mapmap

map map (C) CoDeL

Fig. 6. 2x2 XGRID architecture (A), four-process KPN programming abstraction (B), and CoDeL represen-
tation (C). Processes have to be mapped to cores via the map interface.

Design problem: We want to map applications that are expressed as a Kahn Process
Network (KPN). A KPN with four processes is shown in Figure 6 B). Arrows between
processes indicate communication between the connected processes. In the KPN each
process has to be mapped to one core and each communication channel between two
processes corresponds to a connection between the two cores. The connection is not
direct but has to be directed through the configurable interconnect network and its
switches. The questions to be answered are, first, how to map the processes of the
KPN to the PUs, and second, how to configure the interconnect network.
Setup: To answer the questions, we configure XGRID in CoDeL as shown in Figure 6
C). The XGRID system contains three kinds of entities: the cores (fixed netlist), the
switches (parameterizable VHDL models), and the processes of the KPN (C code).
Both, hardware blocks and software processes are modeled as components with the
map interface for the mapping. The entities have the following property models:
The process has a map interface to cores, and data interfaces to neighbored processes
(d1, d2, ...). The properties of a process include a unique id and the constraint that the
set of required processes (ids of the neighbored processes) is a subset of the reachable
(provided) ids by the mapped core. Therefore the property model of the process is:

unique id
require:=Union(d*.id)
require<=map.provide

The idea of the interconnect network is that each active connection must connect two
cores without interruption. Further, each rail must be used by one pair of cores only.
Therefore we store the two ids of the two cores in the variables id1 and id2, which are
propagated by the switches. If a rail is not used, id1 and id2 are 0.
A core has two rules: First, a relation that aggregates the ids of all rails into the provide
property, which is accessible by the processes via the map interface:

provide:=Union(p*.id1) ∪ Union(p*.id2),

and, second, the assumption that for each interface: either the connected rail contains
the local process id - or the rail is disabled (both 0)

(p1.id1=map.id) OR (p1.id2=map.id) OR ((p1.id1=0) AND (p1.id2=0)).

Switches: A single 1-rail switch has four interfaces and can connect two or none inter-
faces, while isolating the other interfaces. Therefore the switch can be configured with

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:19

nw

sw

ne

se

X

nw.n

nw.w ne.e

ne.n

sw.s se.s

sw.w se.e

ss

s s

nn

n n

ee

e e

ww

w w

Fig. 7. Hierarchical composition of a 2x2 XGRID switch.

a variable (x) which can be set to one of seven settings (off, North-East, NW, NS, SW,
SE, EW). The incoming ids are stored in a variable (id1), and assigned to the active
outgoing interfaces based on the setting of x. For id1 the property model is:

id1:=pe.id1 ∪ pn.id1 ∪ pw.id1 ∪ ps.id1
pn.id1:=((x=NW)|(x=NS)|(x=NE))?id1:[0]
pw.id1:=((x=NW)|(x=SW)|(x=EW))?id1:[0]
pe.id1:=((x=NE)|(x=SE)|(x=EW))?id1:[0]
ps.id1:=((x=SW)|(x=SE)|(x=NS))?id1:[0]

Larger switches can be built by aligning and connecting four (or 9, or 16) 1x1 intersec-
tions and compile a grouped component as illustrated in Figure 7. The composed 2x2
switch maintains the internal properties and switch settings (ne.x, nw.x, se.x, sw.x),
but is easier to handle and reuse within SCT.
Experiments and discussion: To test the setup we used the benchmarks provided in
[Gunes and Givargis 2014], i.e. parallel matrix multiplication (MMUL), discrete cosine
transformation (DCT) and distributed sort (SORT). The initial KPN for the programs
was already adapted to utilize the 4, 16, 64, or 256 core setup. We used fixed XGRID
architectures with 1, 2, and 3 rails, generated the SMT programs for each mapping
problem, solved the systems with Z3 and applied the result of the solution to the imple-
mentation files used by the XSIM simulator. The simulator confirmed the correctness
of the generated mappings and the performance as in the original work.

Compared to the ILP approach we see three major advantages for our proposed ap-
proach: First a faster run-time of the SMT solver, and the ability to constrain the size
of the interconnect network. We could successfully map DCT and MMUL on XGRID
architectures with two rails, while SORT even could be mapped on a single rail archi-
tecture. The ILP could not express such constraint and required six rails between the
cores. Second, our work already results in the settings for each intersection point (the
x) that can be automatically applied to the VHDL files. The original work required a
manual post-processing step to find feasible routes. And third, we state an improved
usability and extensibility of components and systems due to the graphical notation
of CoDeL. System architecture properties can be easily changed, while the ILP pre-
sented in [Gunes and Givargis 2014] consists of a complex systems of equations. A
disadvantage of our work is the missing optimization of the energy consumption that
is part of the ILP solver. The ability of SMT to optimize systems is ongoing research
and discussed in Section 5.5.

5.4. Mapping of Control Applications
This subsection addresses the mapping of control applications on available process-
ing units (PUs). In traditional control design, first the CA is developed and tight con-
straints for the physical and cyber implementation are set [Derler et al. 2013]. While
such design contracts can be easily implemented in CoDeL, for our example we want
to go one step further and analyze the stability of the system while looking for de-
sign alternatives of the computation platform and the parameterization of the physi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:20

Fig. 8. Inverted Pendulum use case modeled with Physical System (PS), Control Algorithm (CA), Scheduler
(SC), and Processing Unit (PU)

cal system. Therefore, first, we show in detail how to model and evaluate the dynamics
and stability of a single inverted pendulum system. In the second part we extend the
example to a mapping of parallel control systems on a shared distributed computer
platform.

5.4.1. Inverted Pendulum Use Case. Next we demonstrate how the non-trivial over-
functional attribute stability of a inverted pendulum control system can be expressed,
evaluated, and packaged as reusable component in CoDeL. The one degree of freedom
case of the system is illustrated on the left of Figure 8. The goal of the system is to
produce appropriate control command u (the cart position) to keep the pendulum in
upright position. [Mirzaei et al. 2015] discusses the example in more detail. In the
first analysis step we are interested in the stability of the Control Algorithm (CA) for
the given Physical Subsystem (PS) and the resource-limited cyber system.
Setup: Figure 8 shows the CoDeL setup for a small estimation system, including vari-
ables, describing length, mass and gravity of the PS and instructions per seconds (IPS)
for the PU. The scheduler (SC) assumes tasks arriving with a fixed period and a num-
ber of instruction per instance. The variable of interest in this system include the
parameters of the PS, the IPS of the PU, and the sampling rate (period) of the CA.
The two constraints in the system concern the schedulability and the stability. The
schedulability can be easily answered since the system is schedulable iff the density
∆ = instructions/period/IPS ≤ 1. More challenging is the assessment of stability, for
which the function isstable has to be modeled appropriately.
Model of stability: Using the variables shown in Figure 8, the kinetic equations can be

stated as ẍ = g
L (x−u) for which the state model ~̇x =

(
ẋ
ẍ

)
=

(
0 1
g
L 0

)(
x
ẋ

)
+

(
0
− g

L

)
u

can be derived. To stabilize the pendulum the CA uses the state feedback method(
u = − (k1 k2)

(
x
ẋ

)
= −K~x

)
for which LQR theory determines the values of K. To

test the stability for given L, g,K and period p in CoDeL we have three general options:
1. Invocation of a simulation environment: CoDeL can resolve the isstable function by
invoking an executable simulation, e.g. from Simulink. For our example we instanti-
ate a Simulink model consisting of 20 Simulink blocks as a black box in CoDeL. The
Simulink model was designed by control experts to determine the stability of a con-
trol system with high accuracy. In SCT, the Matlab function is called with the relation
isstable=matlab(isstable(ps.l,p)). The matlab function resolves the communica-
tion with the Matlab program and defines the isstable property. By invoking the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:21

model in CoDeL we can combine the stability with system attributes like platform,
scheduling or run-time. A clear disadvantage of this approach is the run-time that
does not scale with larger design spaces.
2. Derivation of a stability function: We can also apply knowledge from control ex-
perts to express the stability as static equation. Using Schur-Cohn algorithm [Stoica
and Moses 1992], we can conclude that a system can be successfully discretized if the
eigenvalues of matrix Fcl reside in unit circle, enforcing the constraint

|det(Fcl)| < 1
∧
|trace(Fcl)| < 1 + det(Fcl) (2)

with
Fcl =

(
C + k1(C − 1) Ω−1S + k2(C − 1)

ΩS + k1ΩS C + k2ΩS

)
; Ω =

√
g
L , C = cosh(pΩ), S = sinh(pΩ).

The resulting constraint (2) is the stability criterion as a set of algebraic (in)equalities,
with parameters L and p that can be expressed as reusable component in CoDeL.
3. Discretization of the stability function: Since equation (2) contains non-linear oper-
ations which are not supported by all solvers, we alternatively can compute the tra-
jectory of the stability function offline. The result is a table that describes the design
space over n fixed regions (hi,1, hi,2)× (pi,1, pi,2), which can be expressed as a conjunct
set of assertions: isstable(h, p) = (h1,1 ≤ h ≤ h1,2) ∧ (p1,1 ≤ p ≤ p1,2)

∧
...
∧

(hn,1 ≤ h ≤
hn,2) ∧ (pn,1 ≤ p ≤ pn,2) which can be expressed as one long conjunct statement in the
property model of CA.
Experiments and discussion: As one result of this short survey we obtained three
reusable blocks in CoDeL –all designed by control experts– to assess isstable. This
demonstrates the expressiveness of CoDeL to describe complex over-functional at-
tributes. To test the stability functions we executed experiments with 100 physical
system (pendulum length 0.01m to 1.0m) and 100 sampling rates (1ms to 100ms).
Taking the simulation results as benchmark, the non-linear stability function is 99.9%
accurate but is three orders of magnitude faster. The discretized models with 20 fix
points is 99.0% correct and is about five orders of magnitude faster than the simula-
tion. Based on the beneficial trade-off, we applied the discretized approach for the full
mapping example described next.

5.4.2. Mapping of Distributed Control Systems. In this subsection we extend the single
pendulum control system to a system of distributed control applications that should
be mapped on available processing units (PUs). The experiment is inspired by the
work in [Aminifar et al. 2013]. We select a set of control applications (inverted pen-
dulum, falling ball, servos), which each require a physical subsystem and a control
implementation. The control applications, expressed as KPN, have to be mapped to a
shared computation platform. The goal for each system is to find a suitable set of PUs
(selection), map the tasks to the PUs (binding), and parameterize the sampling rate
and intercommunication network to satisfy the timing and resource requirements of
the CAs.

The example reuses the concepts described in the previous sections: Jobs are ex-
pressed as KPNs, the tasks of the jobs need a specific set of instructions and have
to be mapped on a platform consisting of PUs and interconnects (see XGRID exam-
ple). The inter-task constraints are evaluated as shown in Figure 5, i.e. we assume an
earliest deadline first (EDF) scheduler with a set of tasks running at a constant (sam-
pling) rate. As schedulability test we can evaluate the density of the combined task
set: ∆ =

∑n
i=1 ci/pi ≤ 1; where ci is the computation time and pi is the constant period

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:22

Shared Platform

T1 T2 T3

Control Implementation for CA 1

T1 T2 T4

Control Implementation for CA2

T3

ActuatorY

SensorY

ActuatorX

SensorX

Processing and Communication Platform

PU 1 PU2 PU 3

uses uses
MAPPING

P
LA

N
T

 X
P

LA
N

T
 Y

X X
SCHED SCHED SCHED

Fig. 9. Example for a mapping problem: Two control applications (CA1, CA2), implemented as sequential
set of tasks should be mapped on shared processing units (PU1-3) and its interconnect network (X). Tasks
need access to interfaces which can only be provided by a subset of the PUs (indicated by red arrows).

[Zhang and Burns 2009]. The stability of the CA is modeled as discretized stability
function.

As major addition in this example, tasks may require access to physical interfaces,
such as sensors (e.g. angle encoder) and actuators (e.g. motor). Therefore, each task
state the needed type of interface, and each PU has a list of physical interfaces (sen-
sors, actuators) it can serve.

An example for two CAs (with three and four tasks) and three PUs is illustrated in
Figure 9. In the picture Task T3 from CA1 needs the left actuator, while T1 needs the
specific sensor. This relation is illustrated by the thin red arrow.
Experiment and Discussion: For the experiment we generated random design spaces
of variable size, physical properties, PU utilization rate, and resource contention, uti-
lizing the available set of components stored in the project repository. The tests were
performed with a 60% PU system utilization rate, which corresponds to the rate in sim-
ilar industrial applications [Zhu et al. 2012]. To evaluate the performance and scalabil-
ity of our approach, we compared the systems of variable size with three approaches:
(INT1), a classic backtracking algorithm, that assembles a system along the interfaces
and assesses system properties for complete systems, (INT2), which utilizes an early
conflict detection mechanism to identify conflict clauses in the property model early in
the search, and (SMT), the encoding and solving with the Z3 SMT solver.

We conducted experiments containing design spaces of medium size (25 Tasks) up to
a relatively large complexity (100 Tasks). The generation of the SMT program required
about 5 seconds for the largest of the tested systems, which includes 8700 assertions.
The required time to solve the mapping problem and the number of assertions as part
of the SMT program are shown in Table I. The results confirm that the SMT solver has
clearly the best performance and shows the best scalability. INT2 is still two orders of
magnitude faster than INT1, which could not finish the search for the larger problems
within the 5 minute time limit we set for the tests. However, INT2 is still significantly
slower than the SMT solver. The advantage of the internal algorithm, compared to an

Table I. Performance results for the mapping test cases.

CAs,Tasks,PUs INT1 INT2 SMT assertions
5, 25, 4 240 sec 1 sec <1 sec 510
7, 50, 5 - 5 sec 1 sec 2100

9, 100, 6 - 220 sec 14 sec 8700

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:23

external solver, is the improved user experience, since the internal solver allows direct
interactive analysis and an improved conflict analysis. In contrast, the output from the
SMT solver often is limited to SAT (yes) or UNSAT (no) with a set of assignments or
error clause, respectively.

5.5. Discussion
The examples discussed in this section, first, demonstrate various aspects of the appli-
cation of SCT, CoDeL, and SMT, and second, facilitate a study on the desired criteria
usability, expressiveness, reusability, and scalability. In this subsection we summarize
the results and discuss strengths and weaknesses of our approach.
Usability: One claim of our work is the easier application of CoDeL compared to a
direct description of solver programs. While the choice of a high-level abstraction nat-
urally benefits this claim, we conducted an experiment to gain objective data in this
matter. We asked 21 students and researchers in the area of embedded systems to
understand and extend a system model described in SMT and CoDeL. For the small
scheduling use case (see Section 5.2) the requested modifications are: Job 3 has an
additional task (T33) that should be mapped to PU1. The delay of T33 is 3. The total
allowed time should be 10.
One correct addition for the SMT Equation (1) is

t3,3 ≥ 0 ∧ t3,3 ≥ t3,2 + 3 ∧ 10 ≥ t1,2 + 1 ∧ 10 ≥ t2,2 + 1 ∧ 10 ≥ t3,3 + 3∧
(t1,1 ≥ t3,3 + 3 ∨ t3,3 ≥ t1,1 + 2) ∧ (t2,1 ≥ t3,3 + 3 ∨ t3,3 ≥ t2,1 + 3)

(3)

The changes in Equation (3) are minimal, but require in-depth knowledge of the equa-
tion, and significant attention in setting the indices.
The required modifications of the CoDeL model in Figure 5 are more practical:
— duplicate one task (T32) and name it to T33,
— add a new port t3 to J3 and add support for t3 in the property model

(t3.start>=t2.end)– or replace J3 with a three-task job from the repository.
— connect T33 to J3 and PU1,
— change the allowed end time in Top from 8 to 10.
Using feedback from participants, we determined that more than 80% of the responses
had the correct adaptation of the CoDeL model, requiring between 1 and 5 minutes
to complete the task. In spite of the good results, most answers stated uncertainty on
the semantics of CoDeL. In contrast, the equation-based model had the preferred se-
mantics, but less than 30% of the responses were correct, and the stated required time
varied between 4 and 15 minutes. The results of this study confirm that even scholars
who are trained to express their problems in the form of mathematical clauses, are sig-
nificantly more confident in expressing the problem space in the form of components,
properties, and constraints - as provided by CoDeL. The lack of semantics in CoDeL at
this point of development is expected and has been discussed in Section 3.3.
Reusability: Improved usability facilitates extensibility and reusability of existing sys-
tems and components. In our examples we showed three kinds of reusability:
— Reusability of components and models developed by external domain experts. With

the pendulum use case, we showed how complex over-functional assessment models
can be used by system engineers as black boxes in CoDeL. This property is required
to enable the separation of concerns, needed for large systems.

— Extensibility of a system: The XGRID example showed, step by step, how a large
system can be gradually developed and studied starting from small parts of the
system concluding with a complete implementation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:24

— Reusability of components between projects: The distributed control application ex-
ample reuses components from the XGRID, pendulum, and scheduler examples and
extends them with a shared resource model.

All three kinds of reusability are essential for the development of large systems, for
which we could demonstrate an advancement of the practical application compared to
mathematical languages. In this regard, however, one disadvantage of CoDeL at this
point of development is the lack of guidelines and catalogs of supported components
and properties, which has to be addressed in order to foster reusability in practice.
Expressiveness: In particular, the pendulum example demonstrated alternatives in the
expression of non-trivial structural and over-functional properties, based on the con-
cepts introduced in Section 3.3. While so far only a few models are practically imple-
mented in CoDeL, we can reuse a large set of existing equation-based and simulation-
based models (see Section 3.3.2). The models are exposed to model-specific precision-
to-effort-trade-offs, which have to be studied, similar to the pendulum study, case by
case in future work.
Scalability: With the XGRID configuration and the distributed mapping examples we
could study the performance and scalability of the CoDeL/SMT approach. In particular
the discussed real-time system of up to 100 tasks on a many-core platform corresponds
in size to typical industrial use cases, for instance, in the automotive industry where
dozens of jobs have to be mapped to a network of EPUs [Zhang and Burns 2009].
For these example we could see that, first, our approach has a significantly better
performance compared to alternative internal solvers, and second, that even very large
SMT programs can be parsed and solved within few seconds. These observations have
been expected and in fact motivated the work of this paper, but they also trigger a
range of follow up questions.

First, can we further improve the solving performance with a more efficient encod-
ing? [Bjørner 2011] showed that the encoding impacts the solver performance signif-
icantly. But so far no general guidelines or rules are available to define an optimal
SMT program. The encoding presented in this paper was not subject to optimizations.
Algorithm 3 evidently results in an overhead of assertions in the SMT program. For
the small scheduling case (Section 5.2) the hand-written SMT program had less than
half as many assertion as the generated program (15 to 36). In an extended test we
manually optimized redundant assertions and merged variables for the XGRID use
case. In particular, the binding rules (R8) produce many of those invariant equalities
to describe the hardware structure, which in XGRID is fixed. Our test could identify
only a marginal performance gain (<2%), which originates from the initial input pro-
cessing and optimization phase of the solver. The actual model finding phase, which
entails the complex search process, was not impacted by the reduction of assertions.

A second idea to improve the performance is to support the solver in finding a so-
lution faster by adding model knowledge, heuristics, and hints. To test this idea for
the XGRID case, we enforced the process with the highest connectivity to a core in the
center of the system, where the processors with the best connectivity are located. In
this experiment, we could reduce the average time to find a solution by up to 15% for
the 16 core setup. This outcome was expected since we reduced the complexity of the
design space. The risk is, however, that our heuristic is wrong, leading to an unsatis-
fiable design situation, or unnecessarily constrains in the design space which would
extend the run-time of the solver.

Another reason for the good performance of SMTs, is that satisfiability solvers only
look for one satisfiable solution instead of delivering an optimal one.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:25

Model optimization: Even though today’s SMT solvers return only one satisfying
model, which usually is not the optimal one, SMT solvers can be utilized to find optimal
solutions, as for example discussed by [Nieuwenhuis and Oliveras 2006]. The general
idea is to successively tighten a cost constraint until the solver fails to find a solu-
tion. Practically the idea of optimizing SMTs has been discussed and implemented by
[Nieuwenhuis and Oliveras 2006], [Sebastiani and Tomasi 2012], and [Li et al. 2014].
While the first two approaches require specific solvers and input languages, the latter
(SYMBA) uses an unmodified Z3 as black box and the SMT-LIB2 syntax, which we use
in this paper as well. SYMBA supports multiple cost functions, which allows one to
cover typical performance and cost trade-offs in the design. While the practicality of
using SMT optimizers still has to be studied in future work, SYMBA is a very promis-
ing step to complement the results of our paper: a system expressed in CoDeL and
translated into an SMT can be directly analyzed and optimized using SYMBA.

6. CONCLUSIONS
In this paper we showed how the performance of the Satisfiability Modulo Theory
(SMT) can be systematically harnessed to solve general system synthesis problems in
the domain of embedded systems. We described CoDeL - a generic component-based
description language to express the structure and properties of individual building
blocks of the embedded system, such as tasks, resources, sensors, or actuators. These
reusable component models can be leveraged to compose complex designs, respecting
the design variabilities such as component selection, component connection and pa-
rameterization. Our proposed SMT encoding algorithm translates system models that
can be expressed using CoDeL, to an SMT program that can be solved with state-of-
the-art SMT solvers. The key contribution of the encoding scheme is the definition
of the design space over possible bindings between the parameterizable blocks. We
applied this SMT encoding to scheduling and process mapping examples and demon-
strated that our approach can streamline the modeling of design problems and improve
the performance in exploring large design spaces.

As a result, we could replace the technicality of solving and analyzing the design
space of embedded systems with actual model and system building. Designers may
build new systems and add new models on design viewpoints without having to be
concerned about how to solve them or how to describe the constraint programs.

REFERENCES
Siddharth Agarwal and Amey Karkare. 2013. Functional SMT solving with Z3 and racket. In Formal Meth-

ods in Software Engineering (FormaliSE), 2013 1st FME Workshop on. 15–21.
Amir Aminifar, Petru Eles, Zebo Peng, and Anton Cervin. 2013. Control-quality driven design of cyber-

physical systems with robustness guarantees. In Design, Automation and Test in Europe (DATE).
Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. 2013. The satisfiability modulo theories

library (SMT-LIB). www.SMT-LIB.org (2013).
Victor Berman. 2006. Standards: the P1685 IP-XACT IP metadata standard. Design & Test of Computers,

IEEE 23, 4 (2006), 316–317.
Nikolaj Bjørner. 2011. Engineering theories with Z3. In Programming Languages and Systems. Springer,

4–16.
Paraskevas Bourgos, Ananda Basu, Marius Bozga, Saddek Bensalem, Joseph Sifakis, and Kai Huang. 2011.

Rigorous system level modeling and analysis of mixed HW/SW systems. In Formal Methods and Models
for Codesign (MEMOCODE).

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. 2010. The openSMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer, 150–153.

Michael R Bussieck and Alex Meeraus. 2004. General algebraic modeling system (GAMS). In Modeling
languages in mathematical optimization. Springer, 137–157.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:26

Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko, Thomas Peikenkamp, and Eckard
Böde. 2005. Boosting re-use of embedded automotive applications through rich components. in Founda-
tions of Interface Technologies 2005 (2005).

Luca De Alfaro and Thomas A Henzinger. 2001a. Interface automata. ACM SIGSOFT Software Engineering
Notes 26, 5 (2001), 109–120.

Luca De Alfaro and Thomas A Henzinger. 2001b. Interface theories for component-based design. In Embed-
ded Software. Springer, 148–165.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 337–340.

Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories: introduction and applications.
Commun. ACM 54, 9 (2011), 69–77.

Patricia Derler, Edward Lee, Martin Törngren, and Stavros Tripakis. 2013. Cyber-Physical System Design
Contracts. In ACM/IEEE International Conference on Cyber-Physical Systems.

Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petricic, and Ivica Crnkovic. 2009. Classification and survey
of component models. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE. http://www.
es.mdh.se/publications/254-

Robert Fourer, David M Gay, and Brian W Kernighan. 1989. AMPL: a mathematical programming language.
In Algorithms and model formulations in mathematical programming. Springer, 150–151.

Daniel D Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. 2009. Embedded System Design:
Modeling, Synthesis and Verification. Springer Science & Business Media.

Matthias Gries. 2004. Methods for evaluating and covering the design space during early design develop-
ment. Integration, the VLSI Journal 38, 2 (2004), 131–183.

Volkan Gunes and Tony Givargis. 2014. XGRID: A Scalable Many-Core Embedded Processor. In IEEE Inter-
national Conference on Embedded Software and Systems (ICESS).

Christine Hang, Panagiotis Manolios, and Vasilis Papavasileiou. 2011. Synthesizing cyber-physical archi-
tectural models with real-time constraints. In Computer Aided Verification. Springer, 441–456.

Christian Haubelt and R Feldmann. 2003. SAT-based techniques in system synthesis. In Design, Automation
and Test in Europe Conference and Exhibition, 2003. IEEE, 1168–1169.

Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maı̈za. 2014. How to Compute Worst-case Execu-
tion Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics. In Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES). 43–52.

Joachim Keinert, Thomas Schlichter, Joachim Falk, Jens Gladigau, Christian Haubelt, J&uhorbar Teich,
Michael Meredith, and others. 2009. SystemCoDesigneran automatic ESL synthesis approach by design
space exploration and behavioral synthesis for streaming applications. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 14, 1 (2009), 1.

Pratyush Kumar, Devesh B Chokshi, and Lothar Thiele. 2013. A satisfiability approach to speed assignment
for distributed real-time systems. In Proceedings of the Conference on Design, Automation and Test in
Europe. 749–754.

Luka Lednicki, Jan Carlson, and Kristian Sandström. 2013. Model Level Worst-Case Execution Time Anal-
ysis for IEC 61499. In The 16th International ACM Sigsoft Symposium on Component-Based Software
Engineering (CBSE).

Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse, Alec Woo, David Gay, Ja-
son Hill, Matt Welsh, Eric Brewer, and others. 2005. TinyOS: An operating system for sensor networks.
(2005), 115–148.

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik. 2014. Symbolic optimiza-
tion with SMT solvers. In Proceedings of the 41st annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. 607–618.

Weichen Liu, Zonghua Gu, Jiang Xu, Xiaowen Wu, and Yaoyao Ye. 2011. Satisfiability modulo graph theory
for task mapping and scheduling on multiprocessor systems. Parallel and Distributed Systems, IEEE
Transactions on 22, 8 (2011), 1382–1389.

Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. 2008. Efficient symbolic multi-
objective design space exploration. In Proceedings of the 2008 Asia and South Pacific Design Automation
Conference.

Panagiotis Manolios and Vasilis Papavasileiou. 2013. ILP modulo theories. In Computer Aided Verification.
Springer, 662–677.

Jose. Martin, Fabio Martinelli, Ilaria Matteucci, Ernesto Pimentel, and Mathieu Turuani. 2014. On the
Synthesis of Secure Services Composition. In Engineering Secure Future Internet Services and Systems.
140–159.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

00:27

Hamid Mirzaei, Steffen Peter, and Tony Givargis. 2015. Including Variability of Physical Models into the
Design Automation of Cyber-Physical Systems. In Design Automation Conference (DAC).

Nina Mühleis, Michael Glaß, Liyuan Zhang, and Jürgen Teich. 2011. A Co-simulation Approach for Control
Performance Analysis During Design Space Exploration of Cyber-physical Systems. SIGBED Rev. 8, 2
(2011), 23–26. DOI:http://dx.doi.org/10.1145/2000367.2000372

Himanshu Neema, Zsolt Lattmann, Patrik Meijer, James Klingler, Sandeep Neema, Ted Bapty, Janos Szti-
panovits, and Gabor Karsai. 2014. Design Space Exploration and Manipulation for Cyber Physical Sys-
tems. In Workshop on Design Space Exploration of Cyber-Physical Systems (IDEAL).

Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT modulo theories and optimization problems. In
Theory and Applications of Satisfiability Testing-SAT 2006. Springer, 156–169.

Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B Finn, Alberto L Sangiovanni-Vincentelli, Richard M Mur-
ray, Alexandre Donzé, and Sanjit A Seshia. 2014. A contract-based methodology for aircraft electric
power system design. Access, IEEE 2 (2014), 1–25.

OPENMODELICA. 2013. http://www.openmodelica.org.
Steffen Peter, Krzysztof Piotrowski, and Peter Langendorfer. 2008. In-network-aggregation as case study

for a support tool reducing the complexity of designing secure wireless sensor networks. In 33rd IEEE
Conference on Local Computer Networks (LCN).

Felix Reimann, Michael Glaß, Christian Haubelt, Michael Eberl, and Jürgen Teich. 2010. Improving
platform-based system synthesis by satisfiability modulo theories solving. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis.

Felix Reimann, Martin Lukasiewycz, Michael Glass, Christian Haubelt, and Jürgen Teich. 2011. Symbolic
system synthesis in the presence of stringent real-time constraints. In Design Automation Conference
(DAC).

Alberto Sangiovanni-Vincentelli and Grant Martin. 2001. Platform-based design and software design
methodology for embedded systems. Design & Test of Computers, IEEE 18, 6 (2001), 23–33.

Bernard Schmidt, Carlos Villarraga, Jörg Bormann, Dominik Stoffel, Markus Wedler, and Wolfgang Kunz.
2013. A computational model for SAT-based verification of hardware-dependent low-level embedded
system software.. In ASP-DAC.

Roberto Sebastiani and Silvia Tomasi. 2012. Optimization in SMT with LA(Q) Cost Functions. In Automated
Reasoning. Springer, 484–498.

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and Ivica Crnković. 2008. A component
model for control-intensive distributed embedded systems. In Component-Based Software Engineering
(CBSE). 310–317.

Timothy E Sheard. 2012. Painless programming combining reduction and search: design principles for em-
bedding decision procedures in high-level languages. ACM SIGPLAN Notices 47, 9 (2012), 89–102.

Simulink. 2013. Simulation and Model-Based Design. http://www.mathworks.com/products/simulink/.
Petre Stoica and Randolph L Moses. 1992. On the unit circle problem: the Schur-Cohn procedure revisited.

Signal processing 26, 1 (1992), 95–118.
Nikola Trcka, Martijn Hendriks, Twan Basten, Marc Geilen, and Lou Somers. 2011. Integrated model-

driven design-space exploration for embedded systems. In Embedded Computer Systems (SAMOS).
A. Vachoux, C. Grimm, and K. Einwich. 2003. SystemC-AMS requirements, design objectives and rationale.

In Design, Automation and Test in Europe Conference and Exhibition, 2003. IEEE, 388–393.
Fengxiang Zhang and Alan Burns. 2009. Schedulability analysis for real-time systems with EDF scheduling.

Computers, IEEE Transactions on 58, 9 (2009), 1250–1258.
Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad Malik. 2001. Efficient conflict driven

learning in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM international confer-
ence on Computer-aided design. 279–285.

Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto Sangiovanni-Vincentelli. 2012. Optimization
of task allocation and priority assignment in hard real-time distributed systems. ACM Transactions on
Embedded Computing Systems (TECS) 11, 4 (2012), 85.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 00, Pub. date: 0000.

