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Abstract—A major issue when developing Wireless sensor
networks applications is the need for highly specialized knowl-
edge in the field of embedded programming, networking and in
the application domain. In order to speed up the development
process, a new methodology for WSN application development
is required. It needs to provide ready to use building blocks
as well as means to map application requirements to technical
features provided by these blocks. Last but not least, mecha-
nisms to select appropriate building blocks and to evaluate the
system compiled out of these blocks are essentially needed. This
paper presents a design flow fulfilling the mentioned features.
In a first step, user requirements elicited from a managed
catalog are translated to a graph structure. Then, properties
of the composed system derived from meta-information of
the applied components are evaluated to resolve constraints
–representing application requirements and/or features of the
target system– in the derived system model. The validity of the
methodology, for which the needed tool support has actually
been implemented, is shown in an example that illustrates how
this approach can propose correct configurations for secure
systems as proposed in related work. Since the approach allows
designing correct and fine-tuned solutions even for general
application requirements we consider it to be a significant step
towards improved programmability of WSN nodes.
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I. INTRODUCTION

Wireless Sensor Networks (WSN) comprise networks of
tiny computing devices, called sensor nodes. Equipped with
wireless communication the nodes are the basis of large
autonomous networks typically used to monitor physical
phenomena or to control actuators in the environment. WSNs
have become interesting for a broad range of applications
reaching from home, environmental and structural health
monitoring to medical, military and homeland security appli-
cations. These applications possess a diversity of challenging
requirements of functional, qualitative but also security-
related aspects. The high requirements are opposed by the
scarce resources a sensor node can offer. Resources such
as energy, processing power and memory are kept as small
as possible with the aim of reducing the costs for the
network and to increase the lifetime of the typically battery-
powered devices. Coping with these severe constraints is
one significant design challenge in the developers of such
networks. This demands a broad range of experience cover-

ing knowledge in distributed algorithms, radio propagation,
network protocols, electrical engineering, and embedded
programming, among others. Despite or due to this hetero-
geneity of specialties needed for WSN integration, no struc-
tured and tool-supported holistic development flows exist.
The pre-dominant way of development for WSNs involves
handcrafted code and a trial-and-error methodology based
on simulations or experiments. This approach is expensive
and complicated to apply even for experts, while it is not
suitable for end users or experts in the application domain
who are faced with the task of configuring WSNs in practice.

On the other side we see a huge variety of technical
approaches and implementations to solve individual chal-
lenges of WSNs, ranging from basic services to network
protocols or data replication strategies in the network. The
conditions, footprints, scalability and side effects of the
protocols are barely understandable for experts. To facilitate
the merits of these approaches we need a development
infrastructure that fosters reusability of such building blocks
with low overhead, which however expressively describes
the behavior of the components.

This paper presents such a design flow that allows reuse of
already existing components and provides an automated way
to combine these components into an application defined on
a pretty high level of abstraction. This process is controlled
by models that assess the suitability of the composed system
for the user-given set of high level requirements.

The rest of this paper is structured as follows. After a
brief overview on the state of the art in WSN programming
in Section II, we present our component-based framework
approach in Section III, which outlines the concept and
the key components. Section IV then refines the technical
details on the required model transformations and property
assessment. Section V presents the current state and first
results of our evaluation, before we conclude the paper with
a summary and a short outlook.

II. RELATED WORK

State of the art in today’s WSN development is handcraft-
ing code using available software components that provide
a certain degree of hardware abstraction. This is supported
by nesC [3], the programming language of TinyOS, the
dominating operating system for WSNs. NesC uses abstract
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components, called modules, which use and provide inter-
faces. It is an important motivation of our work to reuse the
available components available for nesC. To improve the
development experience with nesC, graphical user support
has been provided. Most mentionable is GRATIS [11], a
model-based approach for the component-based develop-
ment of WSN applications. It bases on a meta-model toolkit
for model integrated computing and is able to map TinyOS
code to modeling concepts and, thus, provides a set of
graphical tools for the development of WSN applications.
GRATIS emphasizes interface specifications and thus is a
great help for developers of TinyOS applications. However,
since GRATIS does not model the actual behavior of the
modules, it does not support component selection.

One approach to improve programming of WSNs is using
powerful abstraction layers. Meta-programming approaches
such as [4] provide an easily-accessible interface to the entire
network, so that tasks can be described in an interpreted lan-
guage without the need of deep technical knowledge. Such
abstraction approaches provide a fixed middleware and op-
timize the program running on top of that fixed middleware
instead of optimizing the services in the middleware, which
limits the space of non-functional properties. More advanced
in this respect is Macrolab [5], which allows parametrization
of the radio protocols based on environmental properties.
An application of our methodology, presented in this paper,
to configure the middlewares could further improve the
performance and flexibility of meta-programming.

In the domain of embedded systems and automotive
systems much work has been accomplished in the area
of component-based development to foster reusability of
a stock of components [6]. Since embedded systems are
similar to WSN systems in several aspects the methodologies
and properties of such component composition systems can
be valuable also for WSNs. Frameworks like THINK [2]
already provide extended tool-support and powerful meta-
models to describe formal model behavior. However, a huge
part of such environments rely on proprietary operating
system functions, and focus on general embedded systems
which –due to their functional heterogeneity– do not corre-
spond to the needs of WSNs. Additionally, the focus of the
majority of proposed tools to support the developer instead
of the actual user limits the direct reusability for us.

III. DEVELOPMENT FLOW

In this section we describe our development flow on a high
abstraction level and introduce the applied views on users,
requirements, components, and application. The technical
details of the model-based interaction between these entities
are addressed in the following section.

A. Development Flow and User Model

Figure 1 shows the general flow of the intended
component-based composition-driven design process. The

Figure 1. Component-based development flow: The user controls require-
ments definition and the composition with the aim to deploy the network.
Repositories for requirements and composition are managed by framework
designer. They add the components developed by Component developers.

process steps focus on the actual development process
performed by the user, who can execute the process without
expert support. Participants in this process are the user, the
framework builder and the component developer. The User
is the person or organization who will compose and deploy
the sensor network. In the future that can be an end user
or application domain expert who wants to apply WSNs
to accomplish a specific task. Today it is more likely that
the user is a sensor network engineer who assembles the
network for the actual end user. The Framework builder
sets the infrastructure and the models and chooses the set
of domain-specific components and supported requirements.
The Component developer provides implementation and
description of basic building blocks.

The process starts with requirements defined by the user,
chosen from a Requirements Repository, which contains
a set of selectable requirements. In the composition step
components are selected and assembled to a system that
promises to satisfy the user’s requirements. The selection
and assessment process employs a Component Repository
containing models of components and their properties. Based
on the resulting configuration, the actual system is com-
piled and assembled. Finally, the resulting sensor nodes are
equipped with the resulting code images and are deployed
at the application site.
Our vision is that ultimately users only define the require-
ments and finally perform the physical deployment, while
composition and integration are executed automatically.

B. Requirements Model

The actual development process starts with the definition
of the system requirements. They are the input for the
system composition. This is why the requirements inputs
have to be correct, complete, and technically usable. In our
model requirements may be functional or non-functional



requirements. The former capture the nature of interaction
between the component and its environment, while the latter,
which are also referred as constraints, may be qualitative
restrictions, physical limitations, or equipment constraints.
Requirements explicitly comprise the environmental descrip-
tion, which describes properties of the deployment side. In
WSNs the explicit definition of the environmental boundary
is important as it is the major discriminator between other-
wise similar applications.

A problem in practice is that end users and application
domain experts are not familiar with the terms typically used
in WSN engineering. They can express the requirements
precisely in their domain-specific language, but we need a
translation stop from the rather high-level, domain-specific
requirements to verifiable metrics that are understood within
the WSN development process. For this issue we decided for
a catalog approach as proposed in [9]. The user chooses
attributes from the catalog and parametrizes them. The
technical process benefits from the knowledge about the
items in the catalog, so that a translation to technical terms is
available. The main disadvantage of this method is the lack
of freedom for the user to define new requirements. This
task, however, can be performed by the framework designer.

C. Component Model

Components in the design flow are the building blocks
for the application and may represent software, hardware
modules or protocols. We chose a black-box abstraction,
as access to the implementation code is not relevant for
the composition. Nevertheless, the behavior and qualitative
attributes of the individual components is not fixed, as it
may vary with attached components and the environment
the system is exposed to. Each component provides its
function to other components via interfaces. Components
using this interface may connect to one provided interface.
Additionally to the interfaces, each component is described
by a set of meta information expressing properties and
constraints of the component. As we will describe later,
the meta information are key to assess the properties and
suitability of a system under consideration in scope of given
requirements and environment.

D. Composition of the Application

As center of the development process, individual com-
ponents should be combined to one system that satisfies
the needs of the user. Basically, this is done by connecting
(binding) components via their interfaces. In this process the
Composition is the model of the system under development,
consisting of the components.

The actual application is –similar to other components–
one black-box component from the repository that uses other
components by interfaces. We decided for this approach be-
cause first, the functional heterogeneity of WSN applications
is rather limited which means that individual programming

Figure 2. Data flow of the working model: Requirements initialize the
WM. The state of the WM is input for the composition which updates the
status of the WM.

is no immediate need, and second, the assumed user is no
programmer, but merely selects the general functions and
describes their qualities. That makes the composition of
the stack of services, which determines the non-functional
qualities, to the actual key in the development process.

The composition is represented by the Component-
Composition-Graph (CCG), which is a graphical represen-
tation of the system of components connected by interfaces.
The basic goal within the CCG is to find a composi-
tion that is complete and can be integrated. Technically,
as discussed in [7], the composition has to comply with
the requirements reachability (all components are reachable
from the main component), extensiveness (all user-required
components and functions are included), completeness (all
needed interfaces are provided), and implementability. Only
if those conditions are satisfied, the composition is complete
and implementable. The assessment of fulfillment of struc-
tural requirements in the CCG (reachability, completeness)
is straightforward. However not all syntactically complete
compositions are free of contextual conflicts. Therefore the
properties of the components have to be evaluated. This
process is introduced in the following section.

IV. WORKING MODEL

The previous section outlined the development flow and
introduced its inputs – i.e. requirements and components –
and the composed application as output. As binding element
for these inputs we apply the concept of a Working Model
(WM). It processes both, requirements and system infor-
mation, to establish a complete model of the development
domain. Its integration in the development flow is illustrated
in Figure 2. Between the data structures exist the following
data flows:
Requirements → WM: The technical requirements
parametrize the WM initially. This step is performed once
for the system configuration. Thereafter the WM contains
all information about the requirements.
WM → Composition: The current status or a subset of the
status of the WM is transferred to the (selection algorithm
of the) CCG. There the information is applied to execute the
component composition. The actual composition process is
a systematic search, starting with a set of fixed components
and backtracking through possible system configurations,
which is not scope of this paper.
Composition → WM: Properties of the component selec-



tion are forwarded from the CCG to the WM. The WM then
evaluates the properties of the composition in context of the
requirements and the domain-specific model.

The WM can be considered as a rule-book for the compo-
sition process. Basically it has two tasks: First, to derive and
manage all information in context of the development and
usage of the system. This includes technical properties of
the system, behavioral aspects, but also description of the
application and environmental situation. Second, the WM
has to manage conflicts that may occur during the assembly
of the system or at runtime. For example if the application
scenario demands a specific node distance, but the radio on
the considered sensor node is not able to provide the distance
in the required quality, it is a conflict that must be discovered
within the WM.

To realize these needs, the WM applies a concept of
properties and relations between properties to define the
model. They are represented in a graph structure named
Property-Relation-Graph (PRG).

A. Property-Relation-Graph

The PRG is a powerful abstraction that allows to man-
age requirements, express system properties, and maintain
system models. It is a graph that, most generally, describes
properties and relations between properties.
A Property in our context is a characteristic or quality
that describes an attribute of the system, or of a part of
the system. Basically, a property is everything that can be
expressed by a value. That concerns all sorts of attributes
to describe the system, its components, its requirements, or
its environment. Properties can represent various data types,
such as numbers, strings, or sets.
Typically, properties influence and depend on other system
attributes. For example the setting of an application environ-
ment affects the required security strength. Another example
is the required radio sending power that may depend on
the distance of the nodes. For this purpose operations on
properties are needed. We term these operations Relations.
The semantic of relations is similar to a line of code in
a standard imperative programming language. For example
the operation a:=b+c, which, in a programming language,
assigns the value of the addition of variables b and c to
the variable a, is in our context a relation that expresses the
value of the property a as function of the properties b and c.
Similar to classic operations, Relations can be Assignments
or Constraints. Assignments define a property as function on
other system properties. An assignment is for instance the
formula
Cost_of_System:=Cost_of_Nodes*Number_of_Nodes,
which assigns the results of the multiplication of
Cost_of_Nodes and Number_of_Nodes to the prop-
erty Cost_of_System. Constraints are boolean func-
tions on system properties. A comparison is for example
Cost_of_System <1500 which returns true only if

Cost_of_System is smaller than 1500. A PRG is free
of conflicts if all constraints result as true.

With this basic concept the PRG realizes the main needs
of the WM: it can express all sorts of system information,
and it evaluates the constraints of the graph and thus checks
all conflicts. In the following subsection we describe how
requirements and composition properties are expressed as
PRGs that can be translated to the WM.

B. Requirement Transformation

As introduced in Section III-B, requirements are ini-
tially provided by the user and transformed to techni-
cal terms. In all stages of this process they are repre-
sented as PRGs. The expression of requirements as prop-
erties and relations is quite natural. As part of the cata-
log a requirement is one parametrized property data type
with a set of implicit relation data types. For instance,
the requirement that the radio range must be above a
specific distance can be expressed with two properties
min. distance and actual distance, and the con-
straint relation min. distance<actual distance,
while the former may be set by the user and the latter
is a property of the composition. These properties and
relations initialize the WM, for which it is the task to
resolve the constraints. Equally intuitive is the translation
from high-level user requirements to technical requirements.
Assignments, as they can be expressed in PRGs, extend
the requirement space, and translate catalog requirements
to technical WM inputs.

C. Component Property Transformation

After the initialization of the WM with the PRGs from
the requirements, the PRG of the WM remains with many
unsatisfied constraints (as the distance constraints). These
constraints should be solved with properties from the compo-
sition. In the example it means finding a system composition
for which the actual distance satisfies the constraint. For this,
our component model uses meta-information to describe
properties and relations of the individual components. This
means, each component contains its own PRG that –during
the composition– will be added to the current WM.
Component PRGs contain information about proper-
ties that are available if the component is used (like
actual distance=500 ), but also new constraints
needed by the component that add to the existing re-
quirements (e.g. MicroController==MSP430, which
defines the needed microcontroller).

In the simplest case the meta information of the compo-
nents describe propositional global properties. For them the
properties of the system correspond to the summation of the
individual component properties. However, not all properties
can be mapped directly. Instead, most properties of a system
are influenced by the binding of the components within the
composition.



Figure 3. The PRG of the WM consists of sub-frameworks for specific
property models. Like the global PRG they are parametrized by require-
ments and evaluate the composition.

The assessment of the composed properties is a non-trivial
issue as for example discussed in [8], and global aggregation
heuristics as proposed in [10] are from limited use. For
these derived properties, we apply an approach in which the
component PRGs are evaluated only locally. This follows
the notion that properties of each component are influenced
by the properties of the connected components. Neighbored
components may process the inputs as part of their compo-
nent PRGs. The understanding of the component boundaries
and its interrelations should be available by the component
developer who describes the properties. Ultimately, the top
application component propagates these properties to the
WM as, in this model, it is the interface to the environment.

D. Models

While many technical terms can be described and re-
solved solely between requirements and composition, com-
plex properties need additional modeling and a general
rule set. Such rule set determines how the properties have
to be specified in the components description, how the
requirements of these properties are formulated and how the
information is processed. As illustrated in Figure 3, within
the WM various property models can be loaded to represent
specific aspects of the development. Such aspects may be
memory consumption, energy consumption, expected life-
time and security assessment. Like the global PRG, the
sub-models are parametrized by the requirements and assess
the composition based on the properties in the components
and their binding. As example of a heuristic model we
implemented a memory model that receives the amount of
available memory from meta information of the hardware
components and checks this constraint against the needed
amount of RAM and ROM for each software component.
If the software is too large, it causes a constraint violation
that requires a reconfiguration. Another model, evaluating
security and energy properties of compositions is shown as
part of the evaluation in the following section.

V. IMPLEMENTATION AND EVALUATION

For evaluation of the presented methodology we imple-
mented a tool set consisting of three programs supporting

the tasks of the three roles in the development process:
• a tool to enter the meta information of the components

(for the component developer),
• a tool to manage the models including the requirement

translations (for the framework designer),
• front-end for users to define application requirements,

observe the composition process, and as result obtain a
proposal for the composed application.

In the moment we do not support automatic assembly
and compilation. The proprietary description language for
components, requirements, and properties is XML-based.

For validation of the methodology we used the tools set
to reproduce the results of the currently most advanced user-
driven security composer for WSNs discussed in literature.
Cionca [1] proposed a tool selecting algorithms that suite
high level user requirements. In one example, for a consid-
ered hospital every room has a WSN deployed on patients to
monitor vital parameters. For each patient there is a mobile
cluster of sensor nodes. The data should be reported every
second for a runtime of up to one month while standard
nodes with two AA batteries are used.

For this example the reasoning process described in the
paper ruled out all protocols which are not suitable for a
public environment or the hierarchical network topology.
Based on the lifetime (one month) and the communication
period (1 second) the number of packets over the lifetime is
computed to disable protocols that overflow earlier. Finally,
the energy consumption for the expected packet count is
computed and compared with the energy from the batteries.

In our methodology consisting of the three modules re-
quirement translation, component composition, and working
model we could reproduce the results in the following way:
Requirements: To replicate the inputs of the Cionca tool,
additional inputs are needed to enable the definition of the
network parameters, allowing a user to enter the application
type and network parameters such as number of nodes,
topology, available energy, needed lifetime and communi-
cation frequency. As part of the requirement translation,
assignments (as PRG) for derived technical properties such
as security environment and harmonized units are added.
Components: We added all components discussed in [1]
to our component repository and added interfaces for the
protocol category they represent. The main application com-
ponent uses all the interfaces. The constraints and properties
for each component are entered as meta information. For in-
stance, for the “Server Shared KPD” approach the relational
properties are expressed by the two relations:

Environment <= Hostile

Topology == Centralized OR Topology == Hierarch

In case the component should be used in the selection
process, both constraints must be true. Additionally, meta
information for the computation of the maximal packet count
and the energy assessment are included.



Working Model: In this example the working model only
contains a minimalistic energy model, computing the needed
energy based on the number of packets and comparing the
result to the available energy. The number of packets as well
as the available energy are contributed by the requirements,
the energy per packet comes from the used components.
Apart from that, the initial working model is empty.
Selection Process: At the beginning of the selection process
it will be initialized with the requirements selected by
the user as described above. The requirement translation
extends the requirements to the technical requirements, as
the security degree and the number of packets. During
the composition process the properties and constraints of
selected components are included in the working model. In
case it causes conflicts, either due to not fitting environment
or topology, or a missed constraint in the energy model,
the component is deselected and the search continues with
other components until a suitable composition is found. The
process runs without additional user interaction and results
in the system composition as proposed in the original work.

VI. CONCLUSIONS AND OUTLOOK

In this paper we presented the idea, the technical mech-
anisms, and first results of a practical evaluation of a novel
methodology for the component-based design of wireless
sensor network applications. As novelty in this process,
the gap from the high level requirements to the low level
technical implementations is bridged by the concept of the
working model (WM), which represents the semantics of
the entire development process in a single data structure.
This data structure is parametrized by the requirements
which are translated from the user inputs on one side, and
the derived information from the composition on the other
side. Evaluating conflicts of constraints, the WM considers
a composition as suitable if the models do not indicate
conflicts between requirements and system composition.

The evaluation has shown that the approach already works
in practice for smaller examples. However, in our experi-
ments, we impersonated all roles in the process. We defined
the meta-information of the components, we assembled the
framework and eventually we were the user defining the
requirements and compiling the results. While we are con-
vinced that the approach works for developers and users, this
has to be validated in practice with third party developers
and actual users in the future. Further, as future work we
need to refine the detail and expressiveness of the applied
models to improve the assessment of network properties,
energy consumption, and security properties to provide a
usable tool set for the integration of WSN applications.

But to summarize, with our design flow we stress the
idea that in the future, actual end users will be able to set up
WSN systems, facilitated by highly speciallized components
available from expert designers. We evaluated our approch
using examples from other groups which have been designed

with a specific application domain in mind. The fact that our
tool set produced equivalent combinations of components
impressively demonstrates the applicability of our approach
to different domains. We are convinced that our approach
even not fully researched and implemented is a significant
step towards tool supported WSN application design and
implementation by end users.
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