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Abstract—The Constrained Application Protocol (CoAP) is a 

promising candidate for future smart city applications that run on 

resource-constrained devices. However, additional security means 

are mandatory to cope with the high security requirements of 

smart city applications. We present a framework to evaluate 

lightweight intrusion detection techniques for CoAP applications. 

This framework combines an OMNeT++ simulation with C/C++ 

application code that also runs on real hardware. As the result of 

our work, we used our framework to evaluate intrusion detection 

techniques for a smart public transport application that uses 

CoAP. Our first evaluations indicate that a hybrid IDS approach 

is a favorable choice for smart city applications. 

Index Terms—Smart city; Critical Infrastructure protection; 

Intrusion detection; Simulation; OMNeT++ 

I. INTRODUCTION 

Smart city applications such as smart buildings, or smart 

public transport can improve our everyday life and comfort. City 

administrations, businesses, and citizens will benefit from easier 

information sharing as well as optimized processes and control. 

Nevertheless, security and safety are essential requirements for 

smart city applications since they may operate on Critical 

Infrastructures. 
 

For their task, smart city applications interact with various 

networks and devices. A smart city application may send data 

over public networks such as the internet, cellular networks, 

networks that belong to different operators, or self-organized 

wireless sensor networks. The devices used in these networks 

vary from large cloud and network servers, through customer 

equipment, down to small sensor nodes. This heterogeneous 

structure poses a variety of challenges, in particular applying 

security to such systems. Therefore, the protection of smart city 

applications is essential since they will form parts of Critical 

Infrastructures. Protection must preferably be made equally 

available on small sensor nodes as well as on powerful servers. 
 

In this paper we apply the Constrained Application Protocol 

(CoAP) [1] as the underlying communication protocol for a 

smart city application. CoAP is a very lightweight, simple, and 

effective communication protocol that meets the needs of 

resource-constrained embedded devices. It can be considered as 

a simplified Hypertext Transfer Protocol (HTTP) service that 

works on top of the Internet Protocol (IP) and the User Datagram 

Protocol (UDP) and can be processed on all internet-ready 

devices. 

The Constrained Application Protocol (CoAP) already 

supports a range of message security means. It can be protected 

using either Datagram Transport Layer Security (DTLS) or 

Internet Protocol Layer Security (IPsec). Both security protocols 

provide integrity and confidentially using encryption and 

authentication between the participating devices. However, a 

number of security weaknesses have already been discussed [2]. 

In addition, compromised devices or sensors are not protected 

by the embedded means in any case. Lightweight intrusion 

detection systems (IDSs) can complement available security 

means to identify potential security issues, warn administrators, 

or to act automatically to disable threats. While literature is rich 

in IDS approaches, a direct application of existing intrusion 

detection systems is at least questionable. The related IDS 

techniques are either not designed for resource-constrained 

devices, not suitable for the intended application scenarios, or 

have to be adapted to CoAP. 
 

In this paper we investigate how intrusion detection can be 

applied to smart city applications that use the Constrained 

Application Protocol (CoAP). Our aim is not to develop new 

intrusion detection system (IDS) approaches but to provide a 

framework that allows developers to evaluate proposed IDS 

techniques for intended smart city applications. For that purpose, 

we introduce a simulation approach with integrated C/C++ 

application and IDS code that also runs on real hardware 

devices. Our approach uses the OMNeT++ network simulation 

environment [3]. With this simulation approach it is possible to 

combine small scale tests of smart city and IDS applications on 

real hardware devices with the complex modeling possibilities 

that only simulations can provide.  
 

The contributions of this paper are the following: 

 A software synthesis C/C++ framework to port a smart city 

application, a CoAP communication library, an IDS library, 

and an attacker library to both, hardware devices and an 

OMNeT++ simulation that allows us to perform systematic 

tests with specific attacker models (Section III). 

 Integration of three IDS approaches for CoAP in Section IV. 

Applying our framework, the IDSs proved to perform 

correctly in the simulation and on real hardware devices. 

 Systematic evaluation of the IDS approaches in Section V 

for a specific smart city scenario that is introduced next. The 

results indicate that a hybrid IDS approach is a favorable 

choice for smart city applications. 
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II. A PUBLIC TRANSPORT SCENARIO 

In this section we introduce a smart public transport scenario 

in Subsection A as a motivating example and as a basis to apply 

our framework. The example uses the Constrained Application 

Protocol (CoAP), therefore we give a short overview on CoAP 

in Subsection B. Afterwards we discuss security related issues 

in smart city applications in Subsection C and state-of-the-art 

protection means in Subsection D. 
 

A. Public Transport Example 

In the smart public transport scenario positions and travel 

times of buses are collected in a cloud system and evaluated to 

improve business processes and to provide services to 

passengers and local authorities. Citizens can use the web 

services in the cloud using their mobile phones to buy tickets, 

plan routes, or get departure times and delays of buses on their 

travel route. Local authorities or the public transport coordinator 

can use the cloud services to react to bus delays faster, 

reschedule buses in a short time, or display the delay information 

for the public transport users.  
 

Figure 1 shows the architecture of this scenario. Several 

mobile nodes (MN) with sensors (small circles) are placed on 

buses. These devices are connected to a 3G/4G cellular network 

via its base station controller (BSC). The mobile nodes send their 

sensor values, such as Global Positioning System (GPS) data, to 

a central control station (CCS). The BSC forwards those 

messages to the CCS that resides in another network. The sensor 

data is transferred to a cloud system (Cloud) in the internet to 

offer the web services to the citizens and the local authorities. 
 

The mobile nodes talk to the central control station and the 

cloud system using the Constrained Application Protocol 

(CoAP), whereas the end users may access the data via standard 

Hypertext Transfer Protocol (HTTP) on their mobile phones. For 

the practical evaluation of our framework we focus on the CoAP 

part of this network. Our hardware setup contains Raspberry Pi 

development boards for the implementation of the mobile nodes 

and a Linux Notebook as the central control station. 
 

B. Introduction to the Constrained Application Protocol 

The Constrained Application Protocol (CoAP) is very 

lightweight, simple, and effective. It brings a simplified 

Hypertext Transfer Protocol (HTTP) similar service to resource-

constrained embedded devices. In contrary to HTTP, CoAP uses 

the underlying User Datagram Protocol (UDP) instead of the 

Transmission Control Protocol (TCP). Therefore, CoAP is well 

suited for networks with loosely coupled (wireless) connections 

such as described in the example scenario above. Loosely 

coupled means that some messages can get lost, be duplicated, 

or modified by reflection, refraction, or diffraction in the 

environment. CoAP provides confirmable and non-confirmable 

messages and a stop-and-wait retransmission mechanism with 

exponential back-off time to protect against duplicate and lost 

messages. 

C. Smart City Security Considerations 

The introduced example scenario is challenged by a range of 

security related issues that can arise either from anomalies or 

from attacks. Anomalies are errors that typically occur naturally 

and are non-persistent such as faulty sensor values, device 

malfunctions, or communication errors. Anomalies can also 

result from attacks, in which case they are persistent. Attacks can 

be executed on sensors, devices, the communication channel of 

devices, or on a device’s software by a malware infection. 
 

Sensor anomalies occur if sensor measurements are 

temporarily faulty. In this case the faulty sensor value is 

delivered to the cloud where it may produce errors in the smart 

city application. Device malfunctions can result from bit flips in 

a device’s memory that were caused by natural radiation. In this 

case a faulty value is processed and can lead to software errors 

and therefore to device malfunctions. Communication errors are 

frequent in loosely coupled (wireless) networks since the 

environment will add noise and interferences caused by 

reflection, refraction, or diffraction to the communication 

channel through which a message is transmitted. This can lead 

to lost, duplicated, or unintentionally modified messages. 
 

Physical attacks on sensors and devices can be performed 

by destruction, using force, influencing the environment, or side-

channel attacks. Whereas destruction and using force produce 

noticeable results, influence on the environment and side-

channel attacks may be hidden and left undiscovered. Cyber-

attacks on the communication channel of devices can be 

performed in numerous ways by espionage and message 

manipulation. Attackers can also perform physical attacks on a 

communication channel by producing destructive interferences 

with it. A malware infection can disturb or destroy a device’s 

software or firmware and will result in unknown device 

behavior. Malware infections can affect the whole network 

operation and lead to serious errors in the smart city application. 
 

Each issue discussed in this section may significantly 

compromise the service quality of the smart city application, 

which calls for appropriate protection and defense mechanisms. 

 

Figure 1: General architecture of the public transport example. Several 

mobile nodes (MN) placed on buses send their sensor data to a central 

control station (CCS) with connected cloud system that offers web services. 
Citizens access the cloud services via their mobile phones (grey rectangles). 

 

 



D. State-of-the-Art of Network Protection 

To protect the smart city application from the variety of 

attacks discussed in the previous subsection, security means 

such as encryption, authentication, and authorization are 

supported using IPsec [4] or DTLS [5] mentioned in Section I. 

However, these measures do not consider the threat of 

compromised devices or sensors. Intrusion detection systems 

(IDS) [6][7][8] can not only help to monitor and detect security 

related issues but they will also be the only security measure left 

if other measures are bypassed, broken, or not available at all. 

While an IDS intrinsically does not actively protect the system, 

it helps to detect attacks that otherwise may left undiscovered for 

a longer period of time and as well form an underlying system 

for filtering [11] and service protection. 
 

There is a variety of frameworks for different evaluation and 

simulation problems in smart sensor networks but only few 

frameworks examine IDSs for resource-constrained devices on 

real hardware devices. Even less frameworks use CoAP as the 

communication protocol for their networks [9]. Kasinathan [10] 

specifically examined detection possibilities for Denial-of-

Service (DoS) attacks in 6LoWPAN networks and implemented 

an IDS framework [11] for that. There is a test framework by 

Raza [12] that uses real hardware devices and that is specifically 

targeted to intrusion detection in CoAP. Raza implemented an 

IDS framework for 6LoWPAN on the ContikiOS that primarily 

targets routing attacks. However, the mentioned approaches 

assume that they have access to the border router of the network 

to place heavyweight IDS parts there. This is not possible in our 

smart city example since the messages are routed over a cellular 

station that belongs to the network of another owner. 
 

III. SYNTHESIS AND TEST OF COAP APPLICATIONS 

As motivated in Section I, lightweight intrusion and anomaly 

detection systems (IDS) are needed to complement available 

security measures for a specific smart city application. Our aim 

is to test a variety of applications, attacker scenarios, networks 

and IDS configurations. In this section we present a software 

synthesis framework that generates application-specific C/C++ 

code, which includes code for CoAP and IDSs. The C/C++ code 

can then be compiled for the simulation environment or directly 

for the target hardware platform. 
 

A. Framework 

The flow of our synthesis framework is shown in Figure 2. 

The application is split up in modules that can be used in the 

simulation and on the real target platform. That way only the 

application scenario itself (the network topology) has to be 

manually adapted in the simulation.  
 

The primary inputs of the flow consist of the application code 

with the application logic, the CoAP library, which implements 

the CoAP communication protocol, and one IDS that is selected 

from the IDS library, which provides different intrusion 

detection mechanisms.  

 

 

The inputs can be compiled as part of the code generation 

step to C/C++ code. This generic C/C++ code can be directly 

cross-compiled for our real target platform. The resulting binary 

runs on the hardware devices that communicate using the 

network interfaces of the devices. Alternatively, the C/C++ code 

can be translated into OMNeT++ object code. Technically, the 

code will be wrapped in a standardized C++ class which is 

understood by the OMNeT++ simulation environment. 

OMNeT++ is a free simulation environment for (wireless) 

network applications that provides a graphical user interface 

(GUI) for the visualization of the application scenario. In our 

framework, OMNeT++ implements the network and message 

forwarding between the simulated nodes. 
 

The advantage of the simulation is the possibility to test a 

variety of attacks for application-specific topologies and 

scenarios. For a given application scenario and a selected IDS, 

the simulation injects errors, which are expected to be detected 

by the IDS. The detection success rate can be obtained from log 

files after the simulation. The attacks are selected from a library 

of reusable attacker models. The attack library is discussed in 

Subsection C.  
 

The result of the process is a functional validation of the 

application and a security assessment of the application and the 

used IDS. 
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Figure 2: Framework design flow - the C/C++ code for the system is 

generated from the application code, the CoAP library and the IDS. This 
code can be executed as part of the OMNeT++ simulation or be compiled 

for the target hardware platform. Application-specific scenarios and 
attacks may be applied. 

 



B. Hardware Abstraction 

Since the C/C++ code is applied to real hardware devices and 

in the OMNeT++ environment, we need at least a hardware 

abstraction layer (HAL) for the message communication. We 

implemented such a HAL for the virtual messaging system in the 

OMNeT++ environment and as a set of drivers for the network 

interfaces on the real nodes. Both implementations provide the 

messages as byte streams to the upper application levels. That 

way the application code, CoAP library, and IDS can use the 

HAL for message communication and are therefore independent 

of the underlying system. 
 

C. Attacker Models 

One core functionality of the framework is the execution and 

management of attacks and anomalies in both the simulation and 

the real world test environment. In the following we describe a 

set of attacks and discuss their integration in the simulation and 

for the real world tests. 
 

We can classify three categories of cyber-attacks: anomalies 

that result from attacks, routing attacks, and security attacks. A 

sensor anomaly is basically a faulty measurement value that can 

arise either out of an abnormal condition at a sensor or at the 

processing device due to a natural phenomenon such as 

radiation. Sensor anomalies can also be the consequence of an 

attack and lead to malfunctions of the smart city application. 

Routing attacks are focused on a change of the routing behavior 

of a network, mostly to disturb its operation. This is done by 

replaying, inserting, deleting, or disturbing messages to force 

individual nodes to change their routing behavior. Security 

attacks try to bypass protocol checks and security measures to 

achieve a special goal such as steeling or manipulating data. 

Security attacks involve a combination of a routing attack and a 

modification of values in messages such as an insertion attack 

with a specially modified message to provoke a certain reaction 

of a node. 
 

Simple routing attacks such as replaying, inserting, or 

dropping messages are easy to implement on real nodes and in 

the simulation. A simple routing attack can be easily performed 

by placing an attacker node in the network that randomly sends 

replayed messages, inserts messages, or drops messages in the 

network. More complex routing attacks such as a Sybil attack 

involve targeted replaying, insertion, or dropping of messages. 

Such behavior can be easier to model in a simulation 

environment since complex routing attacks in a real world test 

scenario have to be synchronized with the network’s operation. 

Jamming attacks try to disturb nodes by interfering with the 

nodes communication using an attacker node. Either a whole 

area with nodes is attacked by continuously sending random 

noise (simple jamming attack) or targeted nodes are attacked by 

specifically interfering with the communication channel in their 

sending time (targeted jamming attack). Modeling jamming 

attacks in a simulation is in general difficult since a detailed 

model of a communication channel is needed or another 

framework such as INET [13] has to be integrated in the 

simulation, which models a communication channel. Of course, 

this makes the simulation more complex to handle. In addition, 

targeted jamming attacks are difficult to model in both test 

environments since this attack needs synchronization with the 

network’s operation as well. 
 

Security attacks are very specific to the attacked node, the 

used protocol, and to the application of the network. In most 

cases a security attack will be a targeted Man-in-the-Middle 

attack that can be complicated to execute. A Man-in-the-Middle 

Attack is performed if messages from one node A to another 

node B are modified by an attacker node without the notice of 

both A and B. The most feared simple security attacks are 

flooding and Denial-of-Service attacks since they are easy to 

perform and can seriously harm a network’s operation. Both 

attacks involve a massive amount of messages that are send to 

the targeted nodes. This draws computing time for message 

processing on these nodes. When attacked, the targeted nodes or 

the network cannot fulfill its original purpose anymore because 

the devices try to process a huge amount of messages that were 

sent by the attacker. This behavior can be modelled in a real 

world test environment by placing an attacker node in the 

network that continuously sends a huge amount of messages to 

one or more nodes in the network. This attack is more difficult 

to model in a simulation environment since a lot of timing 

related issues have to be modeled for the nodes, the 

communication channel, and the used protocol as well to get 

reliable results. 
 

In our simulation we modeled an attack set of simple routing 

attacks such as replay, drop, and insertion attacks, as well as a 

number of security attacks that can be used for Man-in-the-

Middle attacks. The latter are performed by combining specific 

routing attacks with security attacks. Our set of security attacks 

includes bit flips, byte exchanges, and modifications of entire 

data fields since each of these attacks can indicate a yet unknown 

attack that can be related to a Man-in-the-Middle attack. This set 

of attacker models is not conclusive and will be extended over 

time. 
 

IV. IDS IMPLEMENTATION 

In this section we discuss the CoAP integration of three well-

known general IDS approaches, namely rule based IDS, 

anomaly IDS and machine learning approaches. In Subsection A 

of this section we first outline the IDSs and in Subsection B we 

give a short introduction on the integration of the three 

approaches for CoAP. A more comprehensive description of the 

IDS algorithms and their integration possibilities is out of the 

scope of this paper. 
 

A. Common Intrusion Detection Approaches 

Rule based approaches use predefined rules (or signatures) 

to separate wanted network behavior from unwanted traffic. 

Rules can be easily formulated to clearly match wanted or 

unwanted protocol or application behavior. Therefore, rule 

based IDS produce few false alarms. Rule based approaches 

have the disadvantage of not being able to detect zero-day 

attacks but they can be lightweight and very effective against 

known attacks. As new attacks appear, the given rule set has to 

be updated, which can lead to an increased maintenance effort. 



We use a set of user defined simple protocol and application 

dependent rules for our simulation. 
 

Anomaly based approaches use a mathematical model to 

distinguish wanted from unwanted traffic. The mathematical 

model represents a mapping of wanted or known traffic. The 

network traffic is applied to the model as a byte stream and the 

result is compared to the result that wanted traffic would 

produce. All deviations in the results are regarded as an anomaly. 

In most cases anomaly based approaches draw more computing 

power than rule based approaches but they can detect zero-day 

attacks. Anomaly based approaches do not need maintenance but 

an initial training phase or an initial parameter set to work. In 

addition, anomaly IDS are able to learn since the mathematical 

model can be adapted to changing traffic conditions. In this work 

we use parts of the cluster algorithm that has been proposed by 

Rajasegarar [14] as anomaly based approach. 
 

Machine learning approaches implement some kind of 

artificial intelligence to decide about wanted and unwanted 

network traffic. The traffic passes a decision network that results 

in a rejection or acceptance. As the name already suggests these 

approaches are able to learn which reduces the maintenance 

effort but they need an initial training phase or a given set of 

parameters to work. We focus on the implementation of a hand 

tuned neural network. Neural networks are a subgroup of 

machine learning approaches. We examine a network of 

McCulloch-Pitts cells [15] for the public transport scenario since 

these cells are able to express logic functions and even represents 

the simplest form of a neural cell. 
 

B. General IDS Integration in CoAP 

IDSs, most generally, analyze data and communication 

patterns to identify potential attacks. Since an IDS shall scan the 

network traffic of a system it needs access to its communication 

data. As described in Section III.B the IDS can access this data 

using the hardware abstraction layer which is provided by the 

real nodes and the simulation environment. Depending on the 

kind of intrusion detection system it either works on a raw byte 

or bit stream as input or on the data fields of a message. The 

HAL in our simulation transmits the messages as a raw byte 

stream to the IDS. Therefore, the byte stream has to be adapted 

by the IDS to its needs. 
 

Anomaly based IDSs and most machine learning 

approaches work on a raw byte stream and just check the 

different bytes to fit in a known mathematical model of the 

network traffic. Neuronal networks, for example, represent a 

machine learning approach that works on raw bit streams. In this 

case the IDS has to generate a bit stream out of the byte stream 

first. 
 

Rule based IDSs work on processed messages since they 

need to access the data fields inside the messages to check them 

against predefined rules. In this case the byte stream first has to 

be processed to fit in a message structure so that the data fields 

inside the message can be accessed. CoAP consists of a 4 byte 

header, followed by a variable-length token (0 to 8 bytes), any 

arising CoAP options and the actual payload: 

IP || UDP || CoAP (header || token || options || payload) 

 

The CoAP header consists of a 2 bit version field, a 2 bit 

message type field, a 4 bit token length field, a 1 byte message 

code field, and a 2 byte message ID field. 
 

V. EVALUATION 

In this section we demonstrate how to apply the proposed 

framework for the example scenario introduced in Section II. 

Therefore, we outline the required setup of the simulation and 

the hardware platform in Subsection A and present results of the 

security analysis of the three IDSs in Subsection B. 
 

A. Integration of the Public Transport Example 

We integrated the introduced example following the flow 

introduced in Figure 2. Therefore, we applied the existing CoAP 

code and the IDSs from the IDS library.  
 

The application code is implemented in the central control 

station and the node modules. The control station sends CoAP 

requests to the nodes. The nodes process the requests messages 

and answer with CoAP responses. The code generation step 

assembled the C/C++ code for the system. For practical 

evaluation, we compiled this code for our test environment. The 

current in-lab test bed contains 6 real nodes (Raspberry Pi B) and 

a border router / control station (Linux Notebook). The nodes 

use either Bluetooth or WLAN modules for their 

communication. This small practical setup could validate the 

implementation but does not allow us to test the IDSs 

sufficiently. For extended evaluation we applied the system code 

to the OMNeT++ simulation. The simulation contains the 

application scenario, i.e. the topology of the example scenario, 

devices and connections between the devices, parts of the 

application logic, and attacker models to simulate attacks. 
 

The application scenario and topology is implemented in 

OMNeT++ using modules that represent different devices or 

messages. For the public transport example scenario we 

modelled a central control station (CCS), a border router (BR), 

nodes (N), an attacker (A), as well as CoAP request and response 

messages. 
 

The attacker models are implemented in the attacker that 

acts similar to the nodes, i.e. it sends and receives messages but 

is malicious and disturbs the network operation by applying the 

attacker models to replay, insert, and modify messages in the 

network. The executed attacks were introduced in Section III.C. 
 

B. Results 

The result of the integration is a hardware testbed and a 

simulation setup, both implementing the smart transport 

scenario. While the testbed provides general functional 

validation of the application, protocols and IDSs, we applied the 

simulation to analyze the quality of different IDS approaches. 

Table I shows first results of our simulation with different 

intrusion detection systems. We applied simple routing attacks 

such as message insertion, drop, and replay as well as attacks 



that combine a routing attack (RA) and security attacks such as 

bit flip, byte exchange, or data field change. 
 

As we can derive from the first simulation results, the rule 

based approach is limited by the possibility to express complex 

behavior in rules. On the other hand it is working well with 

exactly defined behavior and detected all of the routing related 

attacks by not being able to detect most of the security related 

attacks. Both the anomaly algorithm and the neural network 

approach were able to detect most of the attacks that were 

applied by us.  
 

All IDSs can be further tuned to fulfil their task better but in 

general it is not possible to detect most attacks with the rule 

based approach due to the mentioned limitations. Therefore, we 

suggest to use a combination of a rule based IDS and an anomaly 

based or NN based approach. That way the detection efficiency 

for known attacks will be high but new attacks can also be 

detected. 

TABLE I.  APPLIED ATTACKS THAT WERE DETECTED 

Attack Rule IDS Anomaly IDS NN IDS 

Insertion attack x x x 

Replay attack x x x 

Drop attack x x x 

Bit flip + RA partly x x 

Byte change + RA partly x x 

Field change + RA partly partly partly 

 

VI. CONCLUSIONS AND FUTURE WORK 

The results presented in the previous section show two 
important conclusions: first, intrusion and anomaly detection is 
feasible for smart city applications that use the Constrained 
Application Protocol (CoAP). We have demonstrated three of 
such IDS implementations in a simulation and in practice. The 
second conclusion is that a hybrid IDS approach is a favorable 
candidate for the discussed application scenarios, since it shows 
the best detection rate while still having a reasonable footprint. 

The results in this paper were facilitated by the novel 
software synthesis and simulation framework. The framework 
allowed us to integrate the same application, network and IDS 
code for both, a real hardware platform, and a complex 
simulation to systematically test the quality of attack and 
anomaly detection. 

Beside an improved quantification of the simulated results, 
for future work it is intended to apply the presented framework 
to tune IDS approaches for a given scenario to identify 
preferable cost-efficient IDSs with the best detection quality. 
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