
Integration and Evaluation of Intrusion Detection

for CoAP in Smart City Applications

Jana Krimmling

IHP, Frankfurt (Oder), Germany

krimmling@ihp-microelectronics.com

Steffen Peter

University of California, Irvine, USA

st.peter@uci.edu

Abstract—The Constrained Application Protocol (CoAP) is a

promising candidate for future smart city applications that run on

resource-constrained devices. However, additional security means

are mandatory to cope with the high security requirements of

smart city applications. We present a framework to evaluate

lightweight intrusion detection techniques for CoAP applications.

This framework combines an OMNeT++ simulation with C/C++

application code that also runs on real hardware. As the result of

our work, we used our framework to evaluate intrusion detection

techniques for a smart public transport application that uses

CoAP. Our first evaluations indicate that a hybrid IDS approach

is a favorable choice for smart city applications.

Index Terms—Smart city; Critical Infrastructure protection;

Intrusion detection; Simulation; OMNeT++

I. INTRODUCTION

Smart city applications such as smart buildings, or smart

public transport can improve our everyday life and comfort. City

administrations, businesses, and citizens will benefit from easier

information sharing as well as optimized processes and control.

Nevertheless, security and safety are essential requirements for

smart city applications since they may operate on Critical

Infrastructures.

For their task, smart city applications interact with various

networks and devices. A smart city application may send data

over public networks such as the internet, cellular networks,

networks that belong to different operators, or self-organized

wireless sensor networks. The devices used in these networks

vary from large cloud and network servers, through customer

equipment, down to small sensor nodes. This heterogeneous

structure poses a variety of challenges, in particular applying

security to such systems. Therefore, the protection of smart city

applications is essential since they will form parts of Critical

Infrastructures. Protection must preferably be made equally

available on small sensor nodes as well as on powerful servers.

In this paper we apply the Constrained Application Protocol

(CoAP) [1] as the underlying communication protocol for a

smart city application. CoAP is a very lightweight, simple, and

effective communication protocol that meets the needs of

resource-constrained embedded devices. It can be considered as

a simplified Hypertext Transfer Protocol (HTTP) service that

works on top of the Internet Protocol (IP) and the User Datagram

Protocol (UDP) and can be processed on all internet-ready

devices.

The Constrained Application Protocol (CoAP) already

supports a range of message security means. It can be protected

using either Datagram Transport Layer Security (DTLS) or

Internet Protocol Layer Security (IPsec). Both security protocols

provide integrity and confidentially using encryption and

authentication between the participating devices. However, a

number of security weaknesses have already been discussed [2].

In addition, compromised devices or sensors are not protected

by the embedded means in any case. Lightweight intrusion

detection systems (IDSs) can complement available security

means to identify potential security issues, warn administrators,

or to act automatically to disable threats. While literature is rich

in IDS approaches, a direct application of existing intrusion

detection systems is at least questionable. The related IDS

techniques are either not designed for resource-constrained

devices, not suitable for the intended application scenarios, or

have to be adapted to CoAP.

In this paper we investigate how intrusion detection can be

applied to smart city applications that use the Constrained

Application Protocol (CoAP). Our aim is not to develop new

intrusion detection system (IDS) approaches but to provide a

framework that allows developers to evaluate proposed IDS

techniques for intended smart city applications. For that purpose,

we introduce a simulation approach with integrated C/C++

application and IDS code that also runs on real hardware

devices. Our approach uses the OMNeT++ network simulation

environment [3]. With this simulation approach it is possible to

combine small scale tests of smart city and IDS applications on

real hardware devices with the complex modeling possibilities

that only simulations can provide.

The contributions of this paper are the following:

 A software synthesis C/C++ framework to port a smart city

application, a CoAP communication library, an IDS library,

and an attacker library to both, hardware devices and an

OMNeT++ simulation that allows us to perform systematic

tests with specific attacker models (Section III).

 Integration of three IDS approaches for CoAP in Section IV.

Applying our framework, the IDSs proved to perform

correctly in the simulation and on real hardware devices.

 Systematic evaluation of the IDS approaches in Section V

for a specific smart city scenario that is introduced next. The

results indicate that a hybrid IDS approach is a favorable

choice for smart city applications.

Steffen Peter
Text Box
to appear in M2MSec - Workshop on Security and Privacy in Machine-to-Machine Communications,
in conjunction with IEEE Conference on Communications and Network Security (CNS) 2014,
October 29-31, 2014, San Francisco, CA, USA

II. A PUBLIC TRANSPORT SCENARIO

In this section we introduce a smart public transport scenario

in Subsection A as a motivating example and as a basis to apply

our framework. The example uses the Constrained Application

Protocol (CoAP), therefore we give a short overview on CoAP

in Subsection B. Afterwards we discuss security related issues

in smart city applications in Subsection C and state-of-the-art

protection means in Subsection D.

A. Public Transport Example

In the smart public transport scenario positions and travel

times of buses are collected in a cloud system and evaluated to

improve business processes and to provide services to

passengers and local authorities. Citizens can use the web

services in the cloud using their mobile phones to buy tickets,

plan routes, or get departure times and delays of buses on their

travel route. Local authorities or the public transport coordinator

can use the cloud services to react to bus delays faster,

reschedule buses in a short time, or display the delay information

for the public transport users.

Figure 1 shows the architecture of this scenario. Several

mobile nodes (MN) with sensors (small circles) are placed on

buses. These devices are connected to a 3G/4G cellular network

via its base station controller (BSC). The mobile nodes send their

sensor values, such as Global Positioning System (GPS) data, to

a central control station (CCS). The BSC forwards those

messages to the CCS that resides in another network. The sensor

data is transferred to a cloud system (Cloud) in the internet to

offer the web services to the citizens and the local authorities.

The mobile nodes talk to the central control station and the

cloud system using the Constrained Application Protocol

(CoAP), whereas the end users may access the data via standard

Hypertext Transfer Protocol (HTTP) on their mobile phones. For

the practical evaluation of our framework we focus on the CoAP

part of this network. Our hardware setup contains Raspberry Pi

development boards for the implementation of the mobile nodes

and a Linux Notebook as the central control station.

B. Introduction to the Constrained Application Protocol

The Constrained Application Protocol (CoAP) is very

lightweight, simple, and effective. It brings a simplified

Hypertext Transfer Protocol (HTTP) similar service to resource-

constrained embedded devices. In contrary to HTTP, CoAP uses

the underlying User Datagram Protocol (UDP) instead of the

Transmission Control Protocol (TCP). Therefore, CoAP is well

suited for networks with loosely coupled (wireless) connections

such as described in the example scenario above. Loosely

coupled means that some messages can get lost, be duplicated,

or modified by reflection, refraction, or diffraction in the

environment. CoAP provides confirmable and non-confirmable

messages and a stop-and-wait retransmission mechanism with

exponential back-off time to protect against duplicate and lost

messages.

C. Smart City Security Considerations

The introduced example scenario is challenged by a range of

security related issues that can arise either from anomalies or

from attacks. Anomalies are errors that typically occur naturally

and are non-persistent such as faulty sensor values, device

malfunctions, or communication errors. Anomalies can also

result from attacks, in which case they are persistent. Attacks can

be executed on sensors, devices, the communication channel of

devices, or on a device’s software by a malware infection.

Sensor anomalies occur if sensor measurements are

temporarily faulty. In this case the faulty sensor value is

delivered to the cloud where it may produce errors in the smart

city application. Device malfunctions can result from bit flips in

a device’s memory that were caused by natural radiation. In this

case a faulty value is processed and can lead to software errors

and therefore to device malfunctions. Communication errors are

frequent in loosely coupled (wireless) networks since the

environment will add noise and interferences caused by

reflection, refraction, or diffraction to the communication

channel through which a message is transmitted. This can lead

to lost, duplicated, or unintentionally modified messages.

Physical attacks on sensors and devices can be performed

by destruction, using force, influencing the environment, or side-

channel attacks. Whereas destruction and using force produce

noticeable results, influence on the environment and side-

channel attacks may be hidden and left undiscovered. Cyber-

attacks on the communication channel of devices can be

performed in numerous ways by espionage and message

manipulation. Attackers can also perform physical attacks on a

communication channel by producing destructive interferences

with it. A malware infection can disturb or destroy a device’s

software or firmware and will result in unknown device

behavior. Malware infections can affect the whole network

operation and lead to serious errors in the smart city application.

Each issue discussed in this section may significantly

compromise the service quality of the smart city application,

which calls for appropriate protection and defense mechanisms.

Figure 1: General architecture of the public transport example. Several

mobile nodes (MN) placed on buses send their sensor data to a central

control station (CCS) with connected cloud system that offers web services.
Citizens access the cloud services via their mobile phones (grey rectangles).

D. State-of-the-Art of Network Protection

To protect the smart city application from the variety of

attacks discussed in the previous subsection, security means

such as encryption, authentication, and authorization are

supported using IPsec [4] or DTLS [5] mentioned in Section I.

However, these measures do not consider the threat of

compromised devices or sensors. Intrusion detection systems

(IDS) [6][7][8] can not only help to monitor and detect security

related issues but they will also be the only security measure left

if other measures are bypassed, broken, or not available at all.

While an IDS intrinsically does not actively protect the system,

it helps to detect attacks that otherwise may left undiscovered for

a longer period of time and as well form an underlying system

for filtering [11] and service protection.

There is a variety of frameworks for different evaluation and

simulation problems in smart sensor networks but only few

frameworks examine IDSs for resource-constrained devices on

real hardware devices. Even less frameworks use CoAP as the

communication protocol for their networks [9]. Kasinathan [10]

specifically examined detection possibilities for Denial-of-

Service (DoS) attacks in 6LoWPAN networks and implemented

an IDS framework [11] for that. There is a test framework by

Raza [12] that uses real hardware devices and that is specifically

targeted to intrusion detection in CoAP. Raza implemented an

IDS framework for 6LoWPAN on the ContikiOS that primarily

targets routing attacks. However, the mentioned approaches

assume that they have access to the border router of the network

to place heavyweight IDS parts there. This is not possible in our

smart city example since the messages are routed over a cellular

station that belongs to the network of another owner.

III. SYNTHESIS AND TEST OF COAP APPLICATIONS

As motivated in Section I, lightweight intrusion and anomaly

detection systems (IDS) are needed to complement available

security measures for a specific smart city application. Our aim

is to test a variety of applications, attacker scenarios, networks

and IDS configurations. In this section we present a software

synthesis framework that generates application-specific C/C++

code, which includes code for CoAP and IDSs. The C/C++ code

can then be compiled for the simulation environment or directly

for the target hardware platform.

A. Framework

The flow of our synthesis framework is shown in Figure 2.

The application is split up in modules that can be used in the

simulation and on the real target platform. That way only the

application scenario itself (the network topology) has to be

manually adapted in the simulation.

The primary inputs of the flow consist of the application code

with the application logic, the CoAP library, which implements

the CoAP communication protocol, and one IDS that is selected

from the IDS library, which provides different intrusion

detection mechanisms.

The inputs can be compiled as part of the code generation

step to C/C++ code. This generic C/C++ code can be directly

cross-compiled for our real target platform. The resulting binary

runs on the hardware devices that communicate using the

network interfaces of the devices. Alternatively, the C/C++ code

can be translated into OMNeT++ object code. Technically, the

code will be wrapped in a standardized C++ class which is

understood by the OMNeT++ simulation environment.

OMNeT++ is a free simulation environment for (wireless)

network applications that provides a graphical user interface

(GUI) for the visualization of the application scenario. In our

framework, OMNeT++ implements the network and message

forwarding between the simulated nodes.

The advantage of the simulation is the possibility to test a

variety of attacks for application-specific topologies and

scenarios. For a given application scenario and a selected IDS,

the simulation injects errors, which are expected to be detected

by the IDS. The detection success rate can be obtained from log

files after the simulation. The attacks are selected from a library

of reusable attacker models. The attack library is discussed in

Subsection C.

The result of the process is a functional validation of the

application and a security assessment of the application and the

used IDS.

OMNet++

sim
-N

o
d

e n

si
m

-N
o

d
e

1

H
W

-N
o

d
e n

H
W

-N
o

d
e

1

Application
code

CoAP
library

IDS
code

IDS
library

Code Generation

System
C-Code

Physical Network

Binary
code

NW-
Interface

Binary
code

NW-
Interface

C++
code

Msg-
Interface

C++
code

Msg-
Interface

OMNet
Object Generation

Cross
Compilation

.

.

.

.

.

.

Simulation Real-world test

Inputs:

Topology
Attacker
Models AttacksApplication

specific

Figure 2: Framework design flow - the C/C++ code for the system is

generated from the application code, the CoAP library and the IDS. This
code can be executed as part of the OMNeT++ simulation or be compiled

for the target hardware platform. Application-specific scenarios and
attacks may be applied.

B. Hardware Abstraction

Since the C/C++ code is applied to real hardware devices and

in the OMNeT++ environment, we need at least a hardware

abstraction layer (HAL) for the message communication. We

implemented such a HAL for the virtual messaging system in the

OMNeT++ environment and as a set of drivers for the network

interfaces on the real nodes. Both implementations provide the

messages as byte streams to the upper application levels. That

way the application code, CoAP library, and IDS can use the

HAL for message communication and are therefore independent

of the underlying system.

C. Attacker Models

One core functionality of the framework is the execution and

management of attacks and anomalies in both the simulation and

the real world test environment. In the following we describe a

set of attacks and discuss their integration in the simulation and

for the real world tests.

We can classify three categories of cyber-attacks: anomalies

that result from attacks, routing attacks, and security attacks. A

sensor anomaly is basically a faulty measurement value that can

arise either out of an abnormal condition at a sensor or at the

processing device due to a natural phenomenon such as

radiation. Sensor anomalies can also be the consequence of an

attack and lead to malfunctions of the smart city application.

Routing attacks are focused on a change of the routing behavior

of a network, mostly to disturb its operation. This is done by

replaying, inserting, deleting, or disturbing messages to force

individual nodes to change their routing behavior. Security

attacks try to bypass protocol checks and security measures to

achieve a special goal such as steeling or manipulating data.

Security attacks involve a combination of a routing attack and a

modification of values in messages such as an insertion attack

with a specially modified message to provoke a certain reaction

of a node.

Simple routing attacks such as replaying, inserting, or

dropping messages are easy to implement on real nodes and in

the simulation. A simple routing attack can be easily performed

by placing an attacker node in the network that randomly sends

replayed messages, inserts messages, or drops messages in the

network. More complex routing attacks such as a Sybil attack

involve targeted replaying, insertion, or dropping of messages.

Such behavior can be easier to model in a simulation

environment since complex routing attacks in a real world test

scenario have to be synchronized with the network’s operation.

Jamming attacks try to disturb nodes by interfering with the

nodes communication using an attacker node. Either a whole

area with nodes is attacked by continuously sending random

noise (simple jamming attack) or targeted nodes are attacked by

specifically interfering with the communication channel in their

sending time (targeted jamming attack). Modeling jamming

attacks in a simulation is in general difficult since a detailed

model of a communication channel is needed or another

framework such as INET [13] has to be integrated in the

simulation, which models a communication channel. Of course,

this makes the simulation more complex to handle. In addition,

targeted jamming attacks are difficult to model in both test

environments since this attack needs synchronization with the

network’s operation as well.

Security attacks are very specific to the attacked node, the

used protocol, and to the application of the network. In most

cases a security attack will be a targeted Man-in-the-Middle

attack that can be complicated to execute. A Man-in-the-Middle

Attack is performed if messages from one node A to another

node B are modified by an attacker node without the notice of

both A and B. The most feared simple security attacks are

flooding and Denial-of-Service attacks since they are easy to

perform and can seriously harm a network’s operation. Both

attacks involve a massive amount of messages that are send to

the targeted nodes. This draws computing time for message

processing on these nodes. When attacked, the targeted nodes or

the network cannot fulfill its original purpose anymore because

the devices try to process a huge amount of messages that were

sent by the attacker. This behavior can be modelled in a real

world test environment by placing an attacker node in the

network that continuously sends a huge amount of messages to

one or more nodes in the network. This attack is more difficult

to model in a simulation environment since a lot of timing

related issues have to be modeled for the nodes, the

communication channel, and the used protocol as well to get

reliable results.

In our simulation we modeled an attack set of simple routing

attacks such as replay, drop, and insertion attacks, as well as a

number of security attacks that can be used for Man-in-the-

Middle attacks. The latter are performed by combining specific

routing attacks with security attacks. Our set of security attacks

includes bit flips, byte exchanges, and modifications of entire

data fields since each of these attacks can indicate a yet unknown

attack that can be related to a Man-in-the-Middle attack. This set

of attacker models is not conclusive and will be extended over

time.

IV. IDS IMPLEMENTATION

In this section we discuss the CoAP integration of three well-

known general IDS approaches, namely rule based IDS,

anomaly IDS and machine learning approaches. In Subsection A

of this section we first outline the IDSs and in Subsection B we

give a short introduction on the integration of the three

approaches for CoAP. A more comprehensive description of the

IDS algorithms and their integration possibilities is out of the

scope of this paper.

A. Common Intrusion Detection Approaches

Rule based approaches use predefined rules (or signatures)

to separate wanted network behavior from unwanted traffic.

Rules can be easily formulated to clearly match wanted or

unwanted protocol or application behavior. Therefore, rule

based IDS produce few false alarms. Rule based approaches

have the disadvantage of not being able to detect zero-day

attacks but they can be lightweight and very effective against

known attacks. As new attacks appear, the given rule set has to

be updated, which can lead to an increased maintenance effort.

We use a set of user defined simple protocol and application

dependent rules for our simulation.

Anomaly based approaches use a mathematical model to

distinguish wanted from unwanted traffic. The mathematical

model represents a mapping of wanted or known traffic. The

network traffic is applied to the model as a byte stream and the

result is compared to the result that wanted traffic would

produce. All deviations in the results are regarded as an anomaly.

In most cases anomaly based approaches draw more computing

power than rule based approaches but they can detect zero-day

attacks. Anomaly based approaches do not need maintenance but

an initial training phase or an initial parameter set to work. In

addition, anomaly IDS are able to learn since the mathematical

model can be adapted to changing traffic conditions. In this work

we use parts of the cluster algorithm that has been proposed by

Rajasegarar [14] as anomaly based approach.

Machine learning approaches implement some kind of

artificial intelligence to decide about wanted and unwanted

network traffic. The traffic passes a decision network that results

in a rejection or acceptance. As the name already suggests these

approaches are able to learn which reduces the maintenance

effort but they need an initial training phase or a given set of

parameters to work. We focus on the implementation of a hand

tuned neural network. Neural networks are a subgroup of

machine learning approaches. We examine a network of

McCulloch-Pitts cells [15] for the public transport scenario since

these cells are able to express logic functions and even represents

the simplest form of a neural cell.

B. General IDS Integration in CoAP

IDSs, most generally, analyze data and communication

patterns to identify potential attacks. Since an IDS shall scan the

network traffic of a system it needs access to its communication

data. As described in Section III.B the IDS can access this data

using the hardware abstraction layer which is provided by the

real nodes and the simulation environment. Depending on the

kind of intrusion detection system it either works on a raw byte

or bit stream as input or on the data fields of a message. The

HAL in our simulation transmits the messages as a raw byte

stream to the IDS. Therefore, the byte stream has to be adapted

by the IDS to its needs.

Anomaly based IDSs and most machine learning

approaches work on a raw byte stream and just check the

different bytes to fit in a known mathematical model of the

network traffic. Neuronal networks, for example, represent a

machine learning approach that works on raw bit streams. In this

case the IDS has to generate a bit stream out of the byte stream

first.

Rule based IDSs work on processed messages since they

need to access the data fields inside the messages to check them

against predefined rules. In this case the byte stream first has to

be processed to fit in a message structure so that the data fields

inside the message can be accessed. CoAP consists of a 4 byte

header, followed by a variable-length token (0 to 8 bytes), any

arising CoAP options and the actual payload:

IP || UDP || CoAP (header || token || options || payload)

The CoAP header consists of a 2 bit version field, a 2 bit

message type field, a 4 bit token length field, a 1 byte message

code field, and a 2 byte message ID field.

V. EVALUATION

In this section we demonstrate how to apply the proposed

framework for the example scenario introduced in Section II.

Therefore, we outline the required setup of the simulation and

the hardware platform in Subsection A and present results of the

security analysis of the three IDSs in Subsection B.

A. Integration of the Public Transport Example

We integrated the introduced example following the flow

introduced in Figure 2. Therefore, we applied the existing CoAP

code and the IDSs from the IDS library.

The application code is implemented in the central control

station and the node modules. The control station sends CoAP

requests to the nodes. The nodes process the requests messages

and answer with CoAP responses. The code generation step

assembled the C/C++ code for the system. For practical

evaluation, we compiled this code for our test environment. The

current in-lab test bed contains 6 real nodes (Raspberry Pi B) and

a border router / control station (Linux Notebook). The nodes

use either Bluetooth or WLAN modules for their

communication. This small practical setup could validate the

implementation but does not allow us to test the IDSs

sufficiently. For extended evaluation we applied the system code

to the OMNeT++ simulation. The simulation contains the

application scenario, i.e. the topology of the example scenario,

devices and connections between the devices, parts of the

application logic, and attacker models to simulate attacks.

The application scenario and topology is implemented in

OMNeT++ using modules that represent different devices or

messages. For the public transport example scenario we

modelled a central control station (CCS), a border router (BR),

nodes (N), an attacker (A), as well as CoAP request and response

messages.

The attacker models are implemented in the attacker that

acts similar to the nodes, i.e. it sends and receives messages but

is malicious and disturbs the network operation by applying the

attacker models to replay, insert, and modify messages in the

network. The executed attacks were introduced in Section III.C.

B. Results

The result of the integration is a hardware testbed and a

simulation setup, both implementing the smart transport

scenario. While the testbed provides general functional

validation of the application, protocols and IDSs, we applied the

simulation to analyze the quality of different IDS approaches.

Table I shows first results of our simulation with different

intrusion detection systems. We applied simple routing attacks

such as message insertion, drop, and replay as well as attacks

that combine a routing attack (RA) and security attacks such as

bit flip, byte exchange, or data field change.

As we can derive from the first simulation results, the rule

based approach is limited by the possibility to express complex

behavior in rules. On the other hand it is working well with

exactly defined behavior and detected all of the routing related

attacks by not being able to detect most of the security related

attacks. Both the anomaly algorithm and the neural network

approach were able to detect most of the attacks that were

applied by us.

All IDSs can be further tuned to fulfil their task better but in

general it is not possible to detect most attacks with the rule

based approach due to the mentioned limitations. Therefore, we

suggest to use a combination of a rule based IDS and an anomaly

based or NN based approach. That way the detection efficiency

for known attacks will be high but new attacks can also be

detected.

TABLE I. APPLIED ATTACKS THAT WERE DETECTED

Attack Rule IDS Anomaly IDS NN IDS

Insertion attack x x x

Replay attack x x x

Drop attack x x x

Bit flip + RA partly x x

Byte change + RA partly x x

Field change + RA partly partly partly

VI. CONCLUSIONS AND FUTURE WORK

The results presented in the previous section show two
important conclusions: first, intrusion and anomaly detection is
feasible for smart city applications that use the Constrained
Application Protocol (CoAP). We have demonstrated three of
such IDS implementations in a simulation and in practice. The
second conclusion is that a hybrid IDS approach is a favorable
candidate for the discussed application scenarios, since it shows
the best detection rate while still having a reasonable footprint.

The results in this paper were facilitated by the novel
software synthesis and simulation framework. The framework
allowed us to integrate the same application, network and IDS
code for both, a real hardware platform, and a complex
simulation to systematically test the quality of attack and
anomaly detection.

Beside an improved quantification of the simulated results,
for future work it is intended to apply the presented framework
to tune IDS approaches for a given scenario to identify
preferable cost-efficient IDSs with the best detection quality.

ACKNOWLEDGMENT

This work has been partially funded by the European

Commission under the 7th Framework Programme (FP7-

SMARTCITIES-2013) in the project SMARTIE and was

supported in part by the National Science Foundation under NSF

grant number 1136146.

REFERENCES

[1] http://tools.ietf.org/html/draft-ietf-core-coap-18/. "Constrained

Application Protocol (CoAP) draft-ietf-core-coap-18." 2013.

[2] L. Wallgren, S. Raza, and T. Voigt. "Routing Attacks and

Countermeasures in the RPL-based Internet of Things."

International Journal of Distributed Sensor Networks, 2013.

[3] http://inet.omnetpp.org/. "OMNeT++ simulation framework for

building network simulators." 2014.

[4] N. Ferguson and B. Schneier. "A cryptographic evaluation of

IPsec." Counterpane Internet Security, Inc 3031. 2000.

[5] N. J. Al Fardan and K. G. Paterson. "Lucky thirteen: Breaking the

TLS and DTLS record protocols." Security and Privacy (SP),

2013 IEEE Symposium on. IEEE, 2013.

[6] A. Abduvaliyev, A. S. K. Pathan, J. Zhou, R. Roman,

W. C. Wong. "On the Vital Areas of Intrusion Detection Systems

in Wireless Sensor Networks." IEEE Communications Surveys

and Tutorials 15.3, p. 1223-1237, 2013.

[7] I. Butun, S. Morgera, and R. Sankar. "A Survey of Intrusion

Detection Systems in Wireless Sensor Networks." p. 1-17, 2013.

[8] N. A. Alrajeh, S. Khan, and B. Shams. "Intrusion detection

systems in wireless sensor networks: a review." International

Journal of Distributed Sensor Networks, 2013.

[9] A.P. Castellani, M. Rossi, and M. Zorzi. "Back pressure

congestion control for CoAP/6LoWPAN networks." Ad Hoc

Networks 18, p. 71-84, 2014.

[10] P. Kasinathan, C. Pastrone, M. A. Spirito, M. Vinkovits. "Denial-

of-Service detection in 6LoWPAN based internet of things."

Wireless and Mobile Computing, Networking and

Communications (WiMob), 2013 IEEE 9th International

Conference on. IEEE, 2013.

[11] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone,

M. A. Spirito. "DEMO: An IDS framework for internet of things

empowered by 6LoWPAN." Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security.

ACM, 2013.

[12] S. Raza, L. Wallgren, and T. Voigt. "SVELTE: Real-time

intrusion detection in the Internet of Things." Ad hoc networks

11.8, p. 2661-2674, 2013.

[13] http://inet.omnetpp.org/. "INET Framework." 2014.

[14] S. Rajasegarar, C. Leckie, and M. Palaniswami. "Hyperspherical

cluster based distributed anomaly detection in wireless sensor

networks." Journal of Parallel and Distributed Computing 74.1,

p. 1833-1847, 2014.

[15] W. S. McCulloch and Walter Pitts. "A logical calculus of the ideas

immanent in nervous activity." The bulletin of mathematical

biophysics 5.4, p. 115-133, 1943.

