
An Encryption-Enabled Network Protocol
Accelerator

Steffen Peter, Mario Zessack, Frank Vater, and Michael Methfessel

IHP GmbH, Im Technologiepark 25, 15236 Frankfurt/Oder, Germany
{peter,zessack,vater,methfessel}@ihp-microelectronics.com

Abstract. Even in light-weight wireless computing applications, process-
ing of network-protocols becomes more and more computation- and energy-
hungry, with increasing data rated and the need for security operations. To
cope with such requirements and as alternative to heavy-weight computa-
tion systems we propose an embedded system that is build for fast network-
processing while supporting acceleration of state-of-the-art symmetric (AES)
and asymmetric (ECC) cryptographic operations. We demonstrate how to
build a dedicated TCP accelerating system based on a profiling analysis. We
also discuss optimized implementations of the AES and ECC cryptographic
protocols while considering the trade-off between software and hardware.
Compared to an initial software-only implementation our final system ac-
celerates the protocol handling by a factor of three, while the cryptographic
operations are improved by two orders of magnitude. Our system which was
manufactured in 0.25µm CMOS technology needs about 55 mW for a data
rate of 40 MBit/sec.

1 Motivation

Light-weight networked devices as they are applied in the emerging world of ubiq-
uitous computing have to cope with an increasing amount of data. For instance,
surveillance applications range from small sensor readings up to real time video.
Handling this data requires reliable, fast, and efficient network processing. Ad-
ditionally, wireless and embedded devices are more and more becoming integral
parts of safety-critical and long-living systems, e.g., as components of applications
which monitor buildings, cars etc. This implies that strong security means must
be employed in order to ensure data integrity and authenticity. Suitable encryp-
tion methods are generally very demanding computationally. Together, there is a
need for efficient network processing in combination with state-of-the-art encryp-
tion methods. In this paper, we perform hardware/software co-design to develop
and implement a network processor with encryption capabilities.

Such a processor is useful in the context of computers with limited resources,
such as laptops or PDAs. Another application is to enable “dumb” devices with
secure network access. Further applications are in the area wireless sensor networks
(WSN). Sensor nodes usually cannot easily bridge from their internal network pro-
tocol to wide area networks. Such gateway tasks are typically considered to be
performed by heavy-weight personal computers (PC). This indeed solves the tech-
nical problems, but economically and practically this approach is often not viable.
Consider the scenario of border land protection: the environment-observing nodes
transfer their results to a cluster head which forwards the results to a control center.
Such cluster-head nodes are required every 50 to 100 meters, making PCs unfeasible.



An additional task performed by the cluster head is security control. Although
an abundance of security protocols for wireless sensor networks have been proposed,
the most promising solutions require a trust center. The tasks of such trust center
include observation of the network behavior (intrusion detection), cryptographic op-
erations, and authentication. The battery and processing power of embedded devices
is often not sufficient to run the required strong security algorithms. This under-
lines the need to equip light-weight devices with hardware accelerators, in order
to increase the performance and reduce the energy consumption for cryptographic
operations in combination with network processing.

In this paper we propose an integrated solution, suitable for the described ap-
plications. Although we focus on the TCP/IP protocol, the results are applicable to
other transport protocols as well. The solution includes cryptographic hardware ac-
celerators that sufficiently improve the applicability of strong secure cryptographic
algorithms in such environments. Though the discussed design is a concrete im-
plementation, the paper provides a general blueprint for light-weight, hardware-
accelerated implementations which combine network protocol handling and crypto-
graphic operations.

The rest of this paper is structured as follows. In Section 2 we profile a TCP
implementation in order to determine the performance-critical operations. Then we
evaluate potential solutions for the bottlenecks while referring to related in work
in that area. Based on these results, we describe a general network accelerator
design in Section 4. Potential solutions for fast cryptographic implementations are
investigated in Section 5. In Sections 6 and 7 we discuss the implementation and
the results before we conclude the paper with a short summary.

2 Profiling TCP on an Embedded Processor

A first step toward an efficient implementation is to understand what the critical
and time-consuming tasks are. For the TCP protocol, a comprehensive performance
analysis has already been reported in [5]. The focus there is on computer systems
with the Windows or Linux operating system. The results show that about 50% of
the processing effort is kernel or driver-related. In single-thread-operating systems,
as they are applied in embedded environments, we expect significantly different
figures. For a reliable determination of these values we implemented a TCP/IP
stack on an embedded system. We added hooks that allow us to measure the time
spent in the various subroutines.

Fig. 1: Profiling results for transmitting (left) and receiving (right)



The implementation includes a fast path that processes incoming and outgoing
data much faster when no special treatment is needed. That is, if the data packets
arrive in correct order without errors, there is no need to process the full conditional
TCP logic. In our test cases, 5 Megabytes of data were transferred. We assumed a
good connection that only passes the slow path twice per connection, namely to
establish and to close the connection. The 1815 data packets do not enter the
slow path but are entirely processed in the fast path. Assuming reasonably good
transmission conditions in realistic cases, the obtained values show where to invest
effort in order to improve the efficiency.

As a first result, the total processing time indicates that receiving needs slightly
more effort than transmission (4.7 sec. for send, 4.9 sec. to receive). This is not
particularly surprising and has already been reported in [1]. The more relevant
differences are in the distribution of processing time among different processing
steps. An overview of the values for sending and receiving can be seen in Figure 1.

During transmission, most time is spent for copying data from the application
memory to the TCP send buffer and the packet structure. Computation of the check-
sum and the final send operation also require significant processing time. During
reception, the major operations are copying of the data from the network memory to
the internal TCP structure, computation of the checksum and finally transfer of the
data from the TCP memory to the application. On the other hand, the actual logic
of the TCP protocol (the state machine, congestion control, and the conditional
logic) does not need even 20% of the processing time.

3 Related Work

The profiling results published in [5] already indicate that the actual protocol pro-
cessing and the checksum computation are not the major performance bottlenecks
of a TCP implementation. Basically our results confirm this. Nevertheless, in work
related to our effort, the two most discussed approaches to accelerate a TCP im-
plementation by dedicated hardware propose acceleration of these functions. The
first approach of such Offload-Engines [6] is to design the TCP state machine in
hardware. However, with a software-implemented fast path for general data sending
and receiving, the complicated state machine is bypassed most of the time. The rel-
evant processing time we estimate is merely 3%. Thus the potential advantages of a
protocol state machine in hardware are minor. In contrast the potential disadvan-
tages of a hard-coded protocol implementation - in particular the lack of flexibility
- would clearly outweigh the benefits.

The second well-known approach is the implementation of the checksum oper-
ation in hardware. A hardware block to compute the TCP checksum is very small
(a 16 bit adder and a register) so that the silicon costs are negligible. However, our
profiling results show that the potential performance gain, while not negligible, is
not of primary importance. The checksum operation for both receiving and sending
requires merely 16% of the total processing time.

An alternative to Offload engines for TCP are Onload implementations that im-
plement the packet processing onto a dedicated set of computer resources. Usually it
means to dedicate a processor core. According to [10] that approach allows optimiza-
tions that are otherwise impossible when time sharing the same compute resources
with the operating system and applications. Though the idea of an dedicated CPU
core for network processing is interesting it does not suit in our light-weight scenario.



Several Offload and Onload engines as well as hybrid approaches [13] have been
proposed. However, most of them focus on TCP server applications which have - as
our profiling results already showed - different requirements and properties. Anyway
they do not solve the actual bottleneck we could determine in the profiling. The
most time consuming operation is copying. Since our tested implementation requires
two copy operations per direction, the problem becomes even more apparent. The
additional copy operation from and to the network adapter cannot be omitted.
Single-copy or even zero-copy TCP stack implementations have been proposed to
tackle the problem [14], but this typically compromises the socket API and requires
undesirable non-standard handling in the user code.

An unexpected result of our profiling is that memory allocation does not require
a notable amount of processing time: allocation consumes about 6% of the total
time. Each packet needs a memory slot and has to be stored in retransmit or receive
buffers. On personal computers, memory management is a heavily operating-system-
supported task. Since we do not have such a unit on our embedded device this task
must be considered.

4 System Design

Fig. 2: General design of our network accelerator: Checksum can be computed while data
is written into memory.

Based on the results of the profiling, we can design a TCP offload device with
the primary targets of reduced energy consumption and support of a data rate of 54
Mbit/sec, without yet considering encryption. As goal for the power consumption,
a value of 50 mW was targeted for an implementation using the in-house 0.25µm
CMOS Technology. In order to archive these goals the main strategy is to reduce
the CPU load by doing specific steps in hardware: a) copy operations, and b) eval-
uation of the checksum. Other parts of the TCP protocol are done in software on
the embedded CPU. With this general strategy, we expect to reduce the utilization
time of the CPU by more than 80% (in comparision to a reference solution which
simply ports the protocol to the embedded processor) because only the protocol
handling (<20%), memory allocation (5%) and additional control information have
to be processed by the CPU.
Our basic architecture is shown in Figure 2. The offload device consists of these
components:
CPU: The CPU is a 32 bit MIPS processor.



Bus: The components are connected by a 32 bit AMBA bus [8].
SRAM: Packets are stored in a 32 kByte SRAM memory.
RF: A register file controls the operation of the system.
Checksum: The checksum is computed for the data transferred over the bus
Network device interface handler: The hardware unit copying data between
the internal SRAM and the network device.
Host interface handler: A unit connecting to a host device

The design does not contain a separate memory allocation unit. Although the
memory operations consume a noticeable slice of the total CPU time, we decided
not to implement a dedicated memory manager hardware block. Tests showed that
such a unit would accelerate the memory allocation by 77%, even considering the
additional system communication overhead. However the the additional hardware
costs (300 flip-flops for the 32kB SRAM) and the potential lack of flexibility deterred
us from exercising this option.

Now consider the case that the host wants to send data. First, it would register
the transmission, so that the embedded CPU would create a socket and allocate
a memory area. The host would directly copy the data into the assigned memory
region, whereby the checksum is computed. Whenever a packet is full, the CPU
finishes the header processing. Then the network device is given the address of the
packet and finally transmits it on its own.

Incoming packets will also be copied to an assigned memory area in the inter-
nal SRAM. During this copy operation the checksum is computed. If the incoming
packet is received and not corrupted, the CPU is informed and starts to process the
header. At all other times the CPU can sleep and thus reduce the energy consump-
tion.

This design employs the CPU solely for complicated operations which are not
of primary significance for the total effort, i.e.,

– Build-up and tear-down of a connection.
– Management of the state machine and sockets.
– Congestion control: adaption of the transmit rate to network load.
– Error handling: unexpected packets, retransmission etc.
– Software handling allows protocol variations and debugging.

One sees that the CPU is not involved in those steps which touch the data payload
(copying and checksum). It operates only on packet headers and on internal data
needed for book keeping. Since the amount of this data is small compared to typical
packet payloads, the implementation is expected to be efficient.

As described, the system is driven by an external host, allowing the CPU to
sleep a large percentage of the time. Alternatively, the system could be used as a
stand-alone solution, as would be the case for a light-weight gateway in a WSN.
Here the CPU would process the application code in the remaining time. In either
case, the CPU could also be used for cryptographic operations, e.g. to encrypt the
payload or to handle cryptographic protocols. In the next section, we consider how
to add encryption in hardware to the design.

5 Cryptographic Functions

In this section we discuss implementations for two prototypical cryptographic pro-
tocols: AES and ECC. Both are standardized and considered as strongly secure.



Since our goals are good performance and reduced energy consumption, we will
discuss hardware accelerators and their potential trade-offs.

The Advanced Encryption Standard (AES) is the replacement for the insecure
DES-Algorithm. It was standardized in 2001 [16] by the NIST. It is a symmetric
cipher algorithm, which uses the same key for encryption and decryption. The data
block length is 128 bit. The data is arranged in a matrix of 4x4 bytes. In contrast to
the data block length, various key lengths are possible. Three different key lengths
are standardized. The shortest, and also the most often implemented version, has
a length of 128 bit. Longer (but rarely used) key lengths are 192 and 256 bit.
Especially for low area implementation those versions are not well suited. They
require additional area for key registers and the runtime increases by up to 30%.

The AES algorithm itself consists of four parts in 10 rounds: key addition, byte-
wise substitution, shift in rows and mixing of the columns. The nature of every step
allows an efficient implementation in hard- as well as in software.

The implementation applied in our system is similar to [17]. The standard im-
plementation has a memory-like interface with a 4 bit address and a 32 bit data
bus. First, the key is loaded into the key register. Next, the data to be encrypt-
ed/decrypted is loaded. The algorithm starts automatically after the last chunk of
the four 32 bit data blocks is written. We have adapted the key management so
that it is possible to select between two different stored keys. We used a full 128 bit
wide key interface instead of the memory-like interface. Changing the key (e.g., to
use different keys for encryption and decryption or for bidirectional communication)
costs only a control word instead of a control word plus four times a data word (32
bit).

To optimize the implementation, we analyzed the requirements and the perfor-
mance of a possible straight-forward AES implementation. We share the S-Box with
the key generator and the algorithm itself Fig. 3 b). Furthermore we replaced the
standard Mixcolumn function. Usually an independent component is used for every
direction an own. We reuse the Mixcolumn function for encryption in the decryption
path as mentioned in [REF]. As result we save app. 44% of silicon area.

As alternative software implementation on our embedded CPU we simulated en-
cryption and decryption with an optimized AES software implementation[2]. Table
1 shows the measured results for both software and hardware. The latter - inde-
pendent of direction - requires 78 clock cycles including I/O-Operations. Assuming
that the MIPS core requires 44mW at 33MHz a 1MByte block consumes 95.3mJ in
power to encrypt the data. The AES core requires for the same data block 1.04mJ.
Furthermore the hardware accelerator is about 67 times faster than the encryption
in software and 89 times faster than decryption in software.

Table 1: Comparison of the hardware AES design to a MIPS software solution

Clock cycles Time [µs] Energy per 1MByte [mJ]

En- Hardware 78 2.5 1.04
cryption Software 5228 172.5 95.30

De- Hardware 78 2.5 1.04
cryption Software 6857 226.3 125.00



Fig. 3: Schematic of a) the ECC design and b) the AES accelerator

5.1 ECC

Symmetric cryptographic approaches, like AES, are considered to be secure and
computation costs are relatively low. However they do not always provide satisfying
answers to questions regarding authentication, key distribution, and ensuring of data
integrity. Here asymmetric approaches, also known as Public Key Cryptography
(PKC), are a suitable solution. We focus on Elliptic Curve Cryptography (ECC)
since it provides a good level of security even with relatively short key sizes, leading
to relatively low calculation costs compared to other PKC-approaches. But, we
are convinced that processing time and power consumption are still too high if all
operations are executed in software on a light-weight device. This is why we propose
a hardware design that can accelerate the ECC operations on our network processor.

Figure 3 a) depicts the block diagram of the exemplary 233 bit ECC hardware
accelerator. The arithmetic units and register are connected by a 233 bit internal
bus. The control unit manages the bus access and the operations. This is the place
where the ECC algorithms are executed. In our design the elliptic curve point
multiplication (ECPM) is performed by the Lopez-Dahab algorithm [9]. The control
unit also manages the access to the eight 233 bit registers. One of these registers
can additionally be written from the external bus.

The ALU combines the functionalities of addition, squaring and allows bit ma-
nipulations. The multiplier is an Iterative Karatsuba Multiplier, as proposed in [4].
It requires 9 cycles for each 233 bit operation. It is not only the largest unit but
also the most utilized one. The duty time is more than 90%.

As for the AES we want to compare the hardware design to a software imple-
mentation on the embedded CPU executing the ECC operations. The ECC software
implementation is based on the MIRACL library [12] and was run on the system
without utilizing the crypto-accelerators. A point multiplication on the curve B-
233 takes 13 million clock cycles which corresponds to 400 ms. The code size for
this implementation is 48 kilobytes. An alternative implementation requires only
14 kilobytes but is much slower with 900 ms required for a point multiplication.
The code size must be considered when memory is an issue, as it is for many small
mobile devices.

Table 2 shows a comparison of the 233 bit MIRACL software implementation
with the ECC hardware design as both are implemented and running on the com-
munication SoC. All the data were measured in the simulation environment for one
233 bit point multiplication at a speed of 33MHz. We used the simulation environ-
ment in order to isolate the power consumption for the operation. The results were
verified on the actual hardware after manufacturing the chip.



Table 2: Comparison of the 233 bit ECC hardware design to a software solution on the
SoC

Time[ms] Power[mW] Energy[mWs]

software 410.2 40.2 16.490
hardware 0.4 75.6 0.030

The results show that the hardware solution is 1000 times faster and consumes
550 times less energy in comparison to the software implementation.

It should be mentioned that efficient assembler language supported software
implementations can give better performance than the chosen MIRACL library.
For example the StrongARM (206 MHz) implementation presented in [11] needs 9
ms and less than 4 mWs. It still is significantly slower than the hardware design
and needs two orders of magnitude more energy per ECC-operation.

5.2 Integration of the Crypto-Accelerators in the SoC

We decided to integrate both cryptographic accelerators into the network accel-
erator. The cipher AES is suitable to protect the transmitted payload. The more
expensive public key approach ECC is used for key establishment and for authen-
tication, but is not intended to encrypt the payload.

The two different areas of application have an impact on our integration de-
cision. The AES module is located before the internal SRAM. When enabled, it
transparently encrypts (or decrypts) the data flowing into or out of the packet
memory. In this way, the initial copy operation can fill the packet payload, compute
the checksum and encrypt the payload. For a correct processing of the data on a
receiving peer computer, it is important that the checksum is computed over the
already encrypted data. in any case, all these operations are executed transparently
within one actual copy operation.

Since ECC is not used to encrypt payload data, we decided to connect it directly
to the system bus. The CPU (but also an external host) can address the registers of
the ECC accelerator and transmit data and keys. While the ECC unit is working,
the CPU can perform other tasks or sleep.

6 Implementation of the TCP/Encryption chip

Before starting with the concrete discussion of the system design, the general work
flow is described.

All functional blocks (excepting the MIPS core, the AMBA bus, and SRAM)
were implemented in VHDL. Behavioral simulations of the individual VHDL blocks
verified the correctness of the implementations. Comprehensive hardware/software
co-simulations of the complete system with the embedded TCP stack could finally
show the correctness of the entire design and could provide first estimates of the
performance and energy consumption. In addition to the simulations, we ported the
design to an FPGA in order to test the system in the the real world at real speed.

Our primary target was an implementation in silicon. The ASIC implementa-
tions were synthesized with the library of our in-house 0.25µm CMOS Technology[7].
The resulting netlists with detailed timing informations were the basis for the cal-
culation of the power consumption using Synopsys PrimePower[15]. PrimePower



provides a gate level power estimate based on the parameters of the technology
library and realistic test pattern. It results in very precise power estimate, since
the real transitions for the calculation are considered instead of merely statistical
assumptions.

Fig. 4: The final system on chip. We also marked the largest internal blocks. APB is the
bus and RF is the central register file. The rectangle blocks are memories.

Since it is our goal to test the concept of the chip in as many environments as
possible, we decided to add several general purpose inout/output interfaces (UART,
GPIO, SPI). The connection to the host computer is via a CardBus interface. The
connection to the network device is either per UART or EPP interface. The current
prototype requires a rather large number of pins (256, of which 219 are signal pins).
To a large part, this number arises from the CardBus interface and the 32 bit wide
bus to the external program memory.

A chip photo can be seen as Figure 4. The pads and the internal SRAM and cache
(total 56 kByte) determine the total core size (54mm2). A dedicated application
specific design would not need all components and interfaces, and thus reduce the
total area significantly. Also, a state-of-the-art 0.13 µm CMOS technology would
additionally reduce the size for the chip.

For the results discussed in the next section, the open-source lwIP TCP/IP
protocol stack [3] was ported to our system, extended by memory management
functions malloc and free in software. No operating system was used. The CPU
executes one task at a time, and goes into a power-saving sleep mode when done.
The sleep mode is left when an interrupt is given by the register file, which controls
the overall system.

7 Results and discussion

Our goal was to build a network accelerator that reduces power consumption and
increases the network performance of an embedded system on chip. Our approach
was to implement dedicated hardware accelerator blocks while the complicated pro-
tocol operations are still performed in software on the embedded processor. In this
section we want to answer the main questions: what we actually have gained by the



hardware support, and whether the original goals were met. For this purpose we
estimated (1) power consumption, and (2) attained data rate for three cases:

1. (SW) Pure software implementation on the embedded MIPS processor, at max-
imal data rate attainable.

2. (HW 1) With hardware accelerators, at the same data rate as (SW).
3. (HW 2) With hardware accelerators, at the maximal data rate attainable.

All values correspond to a clock frequency of 33.3 MHz, which is the clock supplied
by the CardBus interface.

Table 3: Results of performance and power consumption of three scenarios.

Case Rate CPU CPU Bus Regs I/O Total
(Mb/sec) active (mW) (mW) (mW) (mW) power

SW 20.7 100% 60 14 7 8 89 mW
HW 1 20.7 15% 9 14 7 12 42 mW
HW 2 40.0 31% 18 14 7 16 55 mW

Table 3 splits the consumed power by the different system blocks, based on
the PrimePower simulations. Measurement of the total consumed power for the
actual chip gives somewhat larger values. One reason is that the power consumed
by the pads is also included in the measurement. The table shows that the hardware
design indeed increases the attainable data rate and reduces the energy consumption
significantly. The maximal data rate in pure software on the MIPS CPU is 20.7
Mbit/sec. In this case the CPU is utilized for 100% of the time, by construction.
Here the CPU (including cache) requires about 70% of the total power (60 mW).
We see that the target data rate of 54 Mbit/sec can not be reached by the pure
software version.

The second configuration (HW 1) runs at the same speed as is attainable by
the software implementation. By comparing these cases, we can identify the power
saving due to the hardware blocks. The CPU is now utilized for only 15% of the
time. Thus, the hardware accelerators reduce load on the CPU and thereby save
more than 50% of the total power. However, the factor is not quite as large as the
80% expected from the profiling. Indeed, the power consumed by the CPU alone
does decrease by 85%, offset by a small increase due to the hardware I/O. It is
the overhead due to other blocks such as the system bus, register file, and I/O
which becomes a significant portion in case HW1. The power consumption of I/O,
register and bus are roughly at the same level as the CPU. this indicates that further
optimizations are not as easy since no single block needs more than 15% of the total
energy.

The third row shows the data rate and power consumption for the maximal data
rate attainable with the implemented system. With 40 Mbit per second it is lies
below the target of 54 Mbit/sec. Our investigations resulted in the conclusion that
the current Cardbus interface to the host does not allow a higher data rate (burst
mode is not yet supported). The system design itself would allow more than 100
Mbit per second at 33 MHz clock frequency. At the maximum data rate for the
manufactured system of 40 Mbit/sec, the CPU is busy for 31% of the time. The
other 70% of the CPU time could be used for an embedded application.

For the encryption blocks, the performance was verified for the manufactured
system. From the PrimePower analysis, the consumed power for the AES block is



17 mW when idle and 52 mW when active. For the ECC unit, the idle power is
25 mW and the active power is 60 mW. For simplicity, these contributions were
omitted in the discussion of the power consumption for protocol handling above.
The relatively high idle values for the encryption units shows the necessity of using
means such as clock gating to eliminate the power used by idle parts of the design.

Overall, results for the TCP protocol processor are close to the originally tar-
geted values, but do not quite reach them. The gain by hardware accelerators for
the protocol processing is not as spectacular compared to the accelerator blocks of
the cryptographic operation, where we could improve the results by two orders of
magnitude. For protocol processing the advantage factor of the network acceleration
for performance and power consumption are five and two, respectively. Of course,
the power consumption would be reduced further if the same design is implemented
in a more advanced technology with smaller gate length.

8 Conclusions

This paper describes the design and implementation of an offload protocol processor
which can efficiently handle TCP protocol processing together with encryption by
AES or ECC in hardware. Based on profiling of a software TCP implementation,
copying of data payloads and (to a lesser extend) evaluation of the TCP check-
sum were identified as suitable candidates for hardware acceleration. These are the
processing steps which pass over the data payload. Operations on the packet head-
ers and for TCP bookkeeping consume only a small percentage of the total power.
These are therefore best done in software on an embedded CPU, permitting more
flexibility and avoiding the development effort for dedicated hardware units. The
system designed along these lines was further enhanced by adding hardware blocks
to perform both AES and ECC encryption. Since AES was intended for encrypting
the data payloads, the AES unit was placed in the data flow before the internal
SRAM. The ECC unit was treated as a distinct independent entity, which commu-
nicates with the rest of the system via registers. This allows the lengthy ECC en-
or decryption to take place in parallel to other operations on the CPU. The final
design was manufactured using the IHP in-house 0.25µ CMOS technology.

A combination of measurements on the manufactured chips and detailed simu-
lations for the power consumption was done to determine the performance of the
system and to split the consumed power by the different design units. As a basis
for comparison, the TCP protocol was done completely in software on the embed-
ded CPU. In this case, a data rate of 20.7 Mbit/second can be reached at a power
consumption of 89 mW, whereby the CPU is running continuously. If the hardware
accelerators are used for the same data rate, the utilization of the CPU drops to
15% and the power to 42 mW. A large part of the power now is consumed by the
system bus, the register file, and I/O. The maximal data rate which can be attained
with the system is 40 Mbit/sec at a power consumption of 55 mW. Here, the CPU
is still only active 31% of the time, since the rate is limited by the used CardBus
interface to the host.

The results indicate a number measures which could be implemented in an
improved design. First, better solutions should be sought for units such as the system
bus or register file, since these dominate the power consumption when the TCP
hardware accelerators are used. Second, a more efficient way to move data between
the host and the system such as DMA should be used. Third, clock gating should



eliminate the power consumption by blocks which are idle, notably the encryption
units, when these are not actively used.

Overall, the presented system is an efficient implementation of a combined pro-
tocol/encryption processor, which could be further improved by measures suggested
by the evaluation of the manufactured system.

References

1. D.D. Clark, V. Jacobson, J. Rornkey, and H. Salwen. An analysis of tcp processing
overhead. In IEEE Communications Magazine, pages 23–29, 1989.

2. Joan Daemon. AES implementation, optimized ANSI C v2.0. available at
http://www.iaik.tugraz.at/research/krypto/AES/old/ rijmen/rijndael.

3. Adam Dunkels. lwIP – a lightweight TCP/IP stack., oct 2002.
http://www.sics.se/ adam/lwip/.

4. Zoya Dyka and Peter Langendoerfer. Area efficient hardware implementation of elliptic
curve cryptography by iteratively applying karatsuba’s method. In DATE, pages 70–
75, 2005.

5. A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier. Tcp
performance re-visited. In ISPASS ’03: Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 70–79, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

6. Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz, Erich Nahum, Prashant Prad-
han, and John Tracey. Server network scalability and tcp offload. In ATEC’05: Proceed-
ings of the USENIX Annual Technical Conference 2005 on USENIX Annual Technical
Conference, pages 15–15, Berkeley, CA, USA, 2005. USENIX Association.

7. Innovations for High Performance microelectronics. IHP microelectronics: technology,
2006. http://www.ihp-ffo.de/24.0.html.

8. ARM Limited. AMBA specification, revision 2.0, 1999. Available from ARM website
http://www.arm.com.

9. Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over GF(2m)
without precomputation. In CHES ’99: Proceedings of the First International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 316–327, London, UK,
1999. Springer-Verlag.

10. Greg Regnier, Davev Minturn, Gary McAlpine, Vikram Saletore, and Annie Foong.
Eta: Experience with an intel xeon processor as a packet processing engine. In 11th
Symposium on High Performance Interconnects, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

11. Ingo Riedel. Security in ad-hoc networks: Protocols and elliptic curve cryptography
on an embedded platform. Master’s thesis, Ruhr-Universitaet Bochum, 2003.

12. Michael Scott. MIRACL—A Multiprecision Integer and Rational Arithmetic C/C++
Library, Version 5.0. Shamus Software Ltd, Dublin, Ireland, 2005. Available at
http://indigo.ie/ mscott.

13. Leah Shalev, Vadim Makhervaks, Zorik Machulsky, Giora Biran, Julian Satran, Muli
Ben-Yehuda, and Ilan Shimony. Loosely coupled tcp acceleration architecture. In
HOTI ’06: Proceedings of the 14th IEEE Symposium on High-Performance Intercon-
nects, pages 3–8, Washington, DC, USA, 2006. IEEE Computer Society.

14. Peter Steenkiste. Design, implementation, and evaluation of a single-copy protocol
stack. Software Practice and Experience, 28(7):749–772, 1998.

15. Synopsys Inc. PrimePower: Full-Chip Dynamic Power Analysis for Multimillion-Gate
Designs, 2005. http://www.synopsys.com/products/power/primepower ds.pdf.

16. FIPS U.S. Department of Commerce/NIST. Advanced Encryp-
tion Standard (AES), FIPS PUB 197, 2001. Available from
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

17. Frank Vater and Peter Langendörfer. An area efficient realisation of aes for wireless
devices. it - Information Technology, 49(3):188–, 2007.


