
A Survey on the Encryption of Convergecast
Traffic with In-Network Processing

Steffen Peter, Dirk Westhoff, Member, IEEE, and Claude Castelluccia

Abstract—We present an overview of end-to-end encryption solutions for convergecast traffic in wireless sensor networks that

support in-network processing at forwarding intermediate nodes. Other than hop-by-hop based encryption approaches, aggregator

nodes can perform in-network processing on encrypted data. Since it is not required to decrypt the incoming ciphers before

aggregating, substantial advantages are 1) neither keys nor plaintext is available at aggregating nodes, 2) the overall energy

consumption of the backbone can be reduced, 3) the system is more flexible with respect to changing routes, and finally 4) the overall

system security increases. We provide a qualitative comparison of available approaches, point out their strengths, respectively

weaknesses, and investigate opportunities for further research.

Index Terms—Cryptography, wireless sensor networks, convergecast, concealed data aggregation.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) are a particular class
of ad hoc networks that attract more and more

attention both in academia and industry. The sensor nodes
themselves are preferably cost-cheap, tiny, and consisting of

1. application-specific sensors,
2. a wireless transceiver,
3. a simple processor, and
4. an energy unit, which may be battery or solar

driven.

In particular, we cannot assume a sensor node to comprise a
tamper-resistant unit. Such sensor nodes are envisioned to
be spread out over a geographical area to form in an indeed
self-organizing manner a multihop network. Most fre-
quently, such WSNs are stationary, although mobile WSNs
are also conceivable. Potential applications for WSNs—be-
sides military ones—can be found in monitoring environ-
mental data with the objective to understand complex and
geographical widespread interdependencies of nature.
Examples are the detection of fire in huge forest areas, the
monitoring of wildlife animals’ movement patterns, or the
incremental shift of snow and rocks in the alpine moun-
tains. Further applications for WSNs are envisioned to be on
the biomedical sector, public safety, and safety support for
vehicles.

One major application scenario for a WSN is to monitor
environmental data and to transmit it to a central point.
Here, the data are analyzed and eventually serve to

initiate some action. Analysis in most scenarios presumes
computation of an optimum, e.g., the minimum or
maximum, the computation of the average, or the
detection of movement pattern. The precomputation of
these operations may be either fulfilled at a central point
or by the network itself. The latter is beneficial in order to
reduce the amount of data to be transmitted over the
wireless connection. Since the energy consumption in-
creases linearly with the amount of transmitted data, an
aggregation approach helps increase the WSN’s overall
lifetime. Another way to save energy is to only maintain a
connected backbone for forwarding traffic, whereas nodes
that perform no forwarding task persist in idle mode until
they are reactivated.

It is the aim of this survey to consider WSNs in which
messages should be transferred in a confidential way. More
precisely, adversaries that eavesdrop communication be-
tween the sensors, aggregators, and the sink shall not obtain
the exchanged information. This is achieved by encrypting
transmitted data. Other security goals, such as integrity, are
outside the scope. We assume that adversaries can at least
carry out ciphertext-only attacks. However, we will also
analyze available solutions according to their protection
against more powerful attacks. In principle, there are several
possibilities in order to achieve the above security goal. If
end-to-end encryption is desired, then applying usual
encryption algorithms implies that intermediate nodes have
no possibility for efficient aggregation allowing to shrink the
size of messages to be forwarded. The application of usual
encryption algorithms combined with the requirement of
efficient data aggregation provides only the possibility of
encrypting the messages hop-by-hop. However, this means
that an aggregator has to decrypt each received message,
then aggregate the messages according to the corresponding
aggregation function and, finally, encrypt the aggregation
result before forwarding it. Furthermore, hop-by-hop en-
cryption possesses that intermediate aggregators require
keys for decryption and encryption.

It is the contribution of this survey to provide end-to-end
encryption for reverse multicast traffic between the sensors

20 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

. S. Peter is with IHP GmBH, Im Technologiepark 25, 15236 Frankfurt
(Oder), Germany. E-mail: peter@ihp-microelectronics.com.

. D. Westhoff is with NEC Europe Ltd., Kurfürsten-Anlage 36,
69115 Heidelberg, Germany. E-mail: dirk.westhoff@nw.neclab.eu.

. C. Castelluccia is with the Institut National de Recherche en Informatique
et en Automatique (INRIA) Grenoble - Rhone-Alpes, Inovallee,
655 Avenue de l’Europe Montbonnot, 38334 Saint Ismier Cedex, France.
E-mail: Claude.Castelluccia@inrialpes.fr.

Manuscript received 26 Feb. 2007; revised 18 Dec. 2007; accepted 22 Feb.
2008; published online 20 Mar. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0025-0207.
Digital Object Identifier no. 10.1109/TDSC.2008.23.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

and the sink node. We evaluate a set of approaches, which
provides aggregators with the possibility to carry out
aggregation functions that are applied to ciphertexts. This
provides the advantage that intermediate aggregators do not
have to carry out costly decryption and encryption opera-
tions and, thus, do not require storing sensitive crypto-
graphic keys. The latter ensures an unrestricted aggregator
node election process for each epoch during the WSN’s
lifetime, which is impossible in case of hop-by-hop encryp-
tion. Here, only nodes that have stored sensitive key
material can act as an aggregator node, and thus, balancing
the energy consumption over several nodes is restricted.

In the remainder of this paper, we present a survey of
end-to-end encryption solutions with in-network proces-
sing, which is known as Concealed Data Aggregation (CDA).
We outline the main problems that have been solved and
present solutions currently available.

2 BASIC PRINCIPLES, VALUE, AND CLASSIFICATION

Before we describe the basic concept of CDA as well as the
arising requirements regarding the key management, we
introduce a particular encryption transformation named
privacy homomorphic encryption transformation. A classifica-
tion of available CDA building blocks completes this section.

2.1 Privacy Homomorphisms

A privacy homomorphism (PH) is an encryption transforma-
tion that allows direct computation on encrypted data. LetQ
and R denote two rings, and þ and � denote addition
operations on the rings. LetK be the key space. We denote an
encryption transformation E : K�Q ! R and the corre-
sponding decryption transformation D : K�R ! Q. Given
a, b 2 Q and k, k1, k2 2 K, we term

aþ b ¼ Dk EkðaÞ � EkðbÞð Þ ð1Þ

additively homomorphic with a single secret key and

aþ b ¼ Dfðk1;k2Þ Ek1
ðaÞ � Ek2

ðbÞð Þ ð2Þ

additively homomorphic with multiple secret keys. We denote

an asymmetric additively homomorphic encryption transforma-

tion as

aþ b ¼ Dp EqðaÞ �EqðbÞ
� �

ð3Þ

with ðp; qÞ being a private, public key pair. The first work on

PHs was done in a seminal paper by Rivest et al. [30].

Meanwhile, a set of other candidates, both symmetric and

asymmetric, has been proposed as we will see.

2.2 Concealed Data Aggregation

In WSNs, the above introduced PH can be prominently

applied for concealing convergecast traffic with simple in-

network processing at aggregating intermediate nodes. Such

an approach is termed as CDA. We denote
L

as the summing

up of n � 2 encrypted operands with the additive operations

�. Under such a setting, an aggregator nodeA is not required

to perform decryption and subsequent encryption operations

in order to do aggregation operations on the incoming data

from sensing nodes SuccðAÞ ¼ fN1; N2; . . . ; Nng with corre-

sponding keys kN1
; kN2

; . . . ; kNn
like it is required when using

conventional hop-by-hop encryption (see Fig. 1). This

increases the overall system security since there is no lack of

security at the aggregating nodes.
Note that CDA, which has originally been proposed in

[18], supports various aggregation operations. They are

listed in Table 1 with an overview on what needs to be

computed at a sensor node, an aggregating node, and a sink

node. CDA also supports a hierarchy of aggregating nodes as

long as the aggregation function itself supports such a

cascaded adjustment. Consequently, the approach is best

suited for large-scaled WSNs. Note that depending on what

concrete PH [see (1), (2), and (3)] we are applying for the

CDA solution, a different key management becomes necessary.

2.3 Benefits

Compared to data aggregation with hop-by-hop encryption,

we see the substantial advantages of CDA in that

1. neither the encryption keys nor the sensed plaintext
information need to be available at aggregating
nodes. This differs from a hop-by-hop encryption

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 21

Fig. 1. CDA for WSNs with symmetric PH and multiple secret keys.

TABLE 1
Summary of Known Aggregation Functions Using Addition

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

approach, where a captured aggregator node would
reveal this information.

2. the overall energy consumption of the actual
connected backbone can be reduced. For hop-by-
hop encryption, each aggregator node needs to first
decrypt multiple incoming messages, then aggregate
these before encrypting the aggregated data. The
CDA approach significantly reduces the energy
consumption at aggregator nodes since no encryp-
tion and decryption is performed [16]. It is essential
to provide overall energy-efficient solutions for the
nodes that make up the backbone, since these nodes
are most critical for the overall lifetime and
connectivity of a WSN.

3. CDA-based end-to-end encryption is much more
flexible for varying connected backbones over
different epochs. With hop-by-hop encryption, only
nodes storing the corresponding key can perform the
decryption and thus aggregate data. With CDA,
every node can be elected as an aggregator node,
since the aggregating nodes do not need to store the
key to operate on the incoming ciphertext message.
Thus, the election process per epoch is purely based
on the remaining energy levels of the nodes. CDA
provides confidentiality by not restricting these
aggregator-node-election algorithms. This increases
the robustness and reliability of the WSN.

4. with CDA, the overall system security level of the
WSN increases. Clearly, currently proposed cryp-
toschemes for WSNs such as RC5, AES, IDEA, or
RC4 provide a higher security level and/or require
much less execution time compared to any currently
available PH. Unfortunately, when applied to WSNs,
these schemes run into a security/flexibility trade-
off. With a single networkwide key, the aggregator
node election remains as flexible as possible at the
cost of almost no security. With group keying or
even pairwise keying, the security level of the WSN
increases at the cost of almost static routing paths
and a fixed set of aggregators in the backbone. The
above observation is based on the fact that in
systems without tamper-resistant units, the weakest
security component is not the cryptoscheme itself
but instead the storage policy of sensitive data.

2.4 Classification

We are now in the position to name CDA building blocks

and derive criteria for their classification. A classification of

the CDA building blocks is depicted in Fig. 2. CDA includes

the encryption transformation itself plus a solution for key

management. Since most of the available work is addres-

sing key distribution solutions mainly for unicast traffic, new

approaches are required here.
For the encryption transformation, we categorize solu-

tions regarding whether they satisfy (1), (2), or (3). We

further differentiate deterministic and probabilistic encryption

transformations since this impacts the additional require-

ments of the key management for CDA. Basically on the key

management side, we classify unique keying where indivi-

dual keys per sensor node are distributed, groupwise keying

where the same secret key is distributed to a subset of

nodes, and public/private keying in case a PH satisfying (3) is
used for CDA. Unique keying can further be subdivided
into random unique keying and unique keying that supports
an algebraic structuring of the unique keys within the WSN.
Within the class of concepts supporting a groupwise
keying, we want to highlight a branch that takes the region
of the nodes into account when distributing keys. To the
best of our knowledge, this classification reflects all the key
management concepts that are currently available for CDA.

3 ATTACK SCENARIOS

Although many of the following attacks can be repelled by
protocols and technologies other than cryptographic algo-
rithms (e.g., secure routing, safe infrastructure), we focus on
the resistance of the actual CDA scheme. The potential
targets of an adversary are the deduction of

1. the secret key (total break of the system),
2. plaintexts not previously known (corresponds to the

classical unauthorized decryption), and
3. additional ciphertexts (usually used to forge mal-

icious ciphertexts).

Obviously, the revealing of the secret key, i.e., the total
break, is the worst case scenario. It allows the attacker to
decrypt and encrypt every message in the system. The
deduction of plaintexts usually from transmitted ciphertexts
compromises the secrecy. In contrast, the deduction of
additional ciphertexts can imply a loss of any trust in the
network, since every received message can be forged by an
adversary.

3.1 Passive Attacks

Passive attacks comprise all attacks that do not require the
adversary to actively interfere with the connection. In order
to perform such an attack, the adversary needs to do
nothing but listen to transmitted packets. The eavesdropped
information can be evaluated and usually cryptoanalyzed
in order to obtain secret information. Though the worst case
result of such an attack would be the deduction of the secret
key, most attacks aim at revealing the plaintexts or at
gathering information for further actions.

Passive attacks can be performed relatively easy. Given
the characteristics of the broadcast medium those attacks are
not detectable, which make them highly dangerous. It must

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Fig. 2. CDA building blocks and criteria for classification.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

be the primary security goal of a cryptoscheme that an
adversary is not able to gain any information by simple
eavesdropping. With regard to these properties, the require-
ments are very similar to classic cryptoschemes.

3.1.1 Ciphertext Analysis

A very common and actually the most basic attack is the
analysis of encrypted packets. In such an analysis, the
adversary wants to obtain information only by interpreting
ciphertexts. A secure cryptographic system must ensure
that it is not possible to gain any inappropriate information
(plaintext, key, statistical information). Additionally, it must
be provided that an attacker cannot decide whether an
encrypted packet corresponds to a specific plaintext or not.
In particular, in WSNs with a scarce domain of values, the
latter attack can very efficiently result in a deduction of the
plaintexts.

3.1.2 Known Plaintext Attack

In this kind of attack, the adversary tries to determine secret
information with the additional knowledge of plaintexts.
With known plaintext and corresponding ciphertext, it is
the aim of the adversary either to reveal the secret key or at
least to gather additional information that can be exploited
to deduct malicious ciphertexts or decrypt other messages.

In a WSN scenario, such an attack is very likely since an
adversary can obtain plaintexts corresponding to the cipher-
texts that are sent via the air on various ways, e.g., by

. guessing the values of the plaintext (e.g.,
temperature),

. by an own sensor that determines the plaintext
values,

. physically accessing the deployed sensor, or

. manipulating the sensor readings (e.g., heat the
sensor).

Assuming the cryptoscheme uses the same secret key on
every node (see (1)) this sort of attacks is a serious threat if
the scheme does not provide resistance. Resistance to
known plaintext attacks means that, even with a large set
of corresponding plain- and ciphertexts, it is not possible to
deduce secret keys or additional cipher- or plaintexts out of
the known set.

In case of a deterministic cryptoscheme, recorded
database of ciphertexts for every possible plaintext destroys
any security. In particular for WSNs with a scarce domain
of sensed or transmitted values, such a straightforward
attack is not only considerable but also very threatening.

3.2 Active Attacks

The described passive attacks do not require the adversary
to actively interfere the communication. In case of active
attacks, the adversary is assumed to be able to perform such
interferences, i.e., to catch, destroy, modify, and send
packets. An attacker could catch a packet, analyze it,
modify the content, and even replace the original packet in
the network. Such attacks require the attacker to have a lot
more knowledge and technical instruments. Though such
attacks are much more complicated and expensive than
passive attacks, their potential damage can be also much
more severe. A successful attack that allows an adversary to

change or forge any packet can render the whole network
useless. In such a case, every received packet could be
malicious so that every sensed value and every action could
have been modified in the interest of an adversary. As we
will see also (or especially), CDA algorithms are vulnerable
to active attacks.

3.2.1 Replay Attacks

Replay attacks are the easiest variation of active attacks.
Valid packets that have been sent before are transmitted
later in order to achieve a malicious effect. For CDA in
WSNs, it is considerable to record the ciphertext in a
situation where the plaintext is known or causes a notice-
able specific reaction of the system. The recorded packet can
be resent later in order to initiate a desired action of the
system or to pretend a situation that is not actually sensed.

For example, in a movement detection scenario, a
trespasser can keep sending the previously recorded “no
movement” signal while he is moving in the protected area.
The system receives the correctly encoded messages and
does not trigger the alarm. Another variation of this attack
is not to replay a previously sent message but to replay the
messages of a different node in order to cover that one node
is either disabled or would sense undesired values. This
way a recorded “movement detected” signal could be
replicated on every node in the system so that the actual
intrusion cannot be detected in time.

Though there are several possible countermeasures that
are based on protocols (e.g., time stamps, node ID), it would
be desirable to have a resistance to this kind of attack in the
initial CDA algorithm. It means that it is not possible to take
a correctly encoded message recorded at different time or
another place without being noticed by the decryption
algorithm.

3.2.2 Malleability

The idea of this very dangerous attack is to alter the content
of a valid encrypted packet without leaving marks. A
simple variation of that attack would be randomly
generated ciphertexts that are syntactically correct. In such
case, the adversary does not know the actual effect of the
modification, but its intention is to harm the system. A
more sophisticated variation is a specific alternation of a
ciphertext. For example, the adversary knows that a sensor
transmits the current temperature of about 20 �C and he
wants to increase the encrypted value to 40 �C. For
some PH schemes, it is possible to alter the content (i.e.,
the plaintext) of an encrypted packet without knowing the
concrete content. Here, the attacker can increase the
transmitted temperature by 20 �C even without being able
to decrypt the original message. Due to their algebraic
properties, PH schemes may be very vulnerable to this kind
of malleability.

Additionally for CDA algorithms, that weakness be-
comes more severe because the decrypting unit receives
only a derivation (i.e., the aggregate) of the sensed values.
This means that the modified value is aggregated several
times before it finally will be decrypted. Consequently,
possible marks of the modification can be blurred and even
if the sink node realizes the modification, it does not know
the source of it. Additionally, it can be assumed that most

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 23

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

approaches of Resilient Data Aggregation (RDA) are not
applicable to CDA networks because only the sink node
becomes aware of the content. Thus, aggregating nodes
cannot detect unreasonable content, and even worse with
the aggregation the modification will be covered.

3.2.3 Unauthorized Aggregation

Actually, the unauthorized aggregation is a variation of the
malicious modification. However, since it is a very specific
weakness of PH schemes, we will treat them separately. The
idea of such an attack is to take two or more proper
ciphertexts and aggregate them in order to inject the result
somewhere into the network. Like the normal aggregation
nodes, the attacking aggregator does not need to know the
plaintexts of the individual messages in order to aggregate
them to a properly looking ciphertext. An adversary could
use that property to vandalize the system, but it is also
considerable to apply it more specifically. With known or
assumed ciphertext/plaintext combinations, an attacker can
modify packets that are well directed. For example, an
adversary knows the ciphertext C1 for the temperature of
about 20 �C. In order to increase the current sensed
temperature with the ciphertext C2 by 40 �C, he could
aggregate C3 ¼ C2þ C1þ C1 and replace C2 with C3.

There are two considerable ways of protecting a
PH scheme from unauthorized aggregation. First, the
aggregation may need a secret key in order to be performed.
Thus, an adversary cannot execute the aggregation without
knowing or breaking the secret key. The second approach
would be to ensure that every ciphertext cannot be used
more than once so that the decryption unit can detect the
unauthorized aggregation.

3.2.4 Forge Packets

An adversary does not need to modify existing packets if
she is able to create properly encoded ciphertexts with a
specific content. The attacker could simply substitute the
packet of the actually sensed value with the forged one. If
there is no protection to this issue, the receiving unit can
never be sure whether the received packet was really
sensed. It can be assumed that every public key approach,
where a public key is used to encrypt the plaintexts, is
initially vulnerable to this attack. A PH scheme that is
resistant to maliciously forged packets must not allow any
third party to create properly encoded messages at least not
without being able to detect the interference during
decryption.

3.3 Physical Attacks

Physical attacks as they are meant here embrace attacks
against the hardware of the node. In the context of
PH schemes, it does not include the attack of disabling a
node, because this would not implicitly be a threat against
the security of the cryptoscheme. A serious threat is the
capturing of nodes. The access to the flash and the memory
may reveal key information that can compromise the entire
network. In particular, symmetric encryption schemes that
use the same key on every node are vulnerable. A captured
and completely revealed node with all its key information
corresponds to a total break of the network. A captured
node could also be a problem because it allows the

adversary to collect a set of plaintext/ciphertext pairs with
known plaintexts. It could be the basis for further actions,
e.g., known plaintext attacks. It would be desirable that
under any circumstances a captured node cannot turn out
to be a threat for the rest of the system, i.e., it is not possible
to extract information that could be applied in a further
attack.

4 REQUIREMENTS ANALYSIS

Prior to presenting available solutions for CDA, we will
outline the criteria and desired design requirements of an
appropriate CDA solution. Beneficial requirements regard-
ing the security of the system are given as follows:

. Provable Security: The security level of the encryption
scheme should be measurable and it should be based
upon the commonly agreed hardness of a mathe-
matical problem to be provably computationally
secure.1

. Sensor Compromise: The compromise of a subset of
sensor nodes should not assist in revealing aggre-
gated data.

. System Security: From the two points mentioned
above, we can define the overall system security as
being the weakest of the two.

. Key Management: The key management should be
kept simple enough to avoid bandwidth intensive
techniques needed to identify the encryption keys
being used by sensors.

. Ciphertext Expansion: The expansion in bit size
attributed to encryption should be moderate.

. Probabilistic Encryption: Encryption of the same
plaintext should not, with high probability, yield
the same ciphertext.

In addition to the security requirements, the design space
for an appropriate CDA approach should also consider
requirements regarding the lifetime, flexibility, and robust-
ness of the system:

. Efficient Computations: Cryptographic operations
performed at sensors should not be overly expensive.

. Aggregator Node Election: The algorithm for electing
aggregator nodes should not need to take into account
security parameters, thereby allowing it to make
selections purely based on lower layers’ parameter,
e.g., the remaining energy level of the nodes.

. Network Topology: Each sensor node is aware of its
aggregator node and each aggregator node knows its
reporting sensor nodes. If a node changes its group,
it is considered to be announced in the network.

Note that the second security criterion rules out a hop-by-
hop encryption approach, as the compromise of a few nodes
may be enough to render the WSN insecure. While the third
point reveals the weaknesses of symmetric key schemes
according to (1) in WSN settings when assuming non-
tamper-resistant sensors. Probabilistic encryption proves
useful to avoid divulging information from ciphertexts
only, as identical environment values may often be

24 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

1. A cryptoscheme is said to be computationally secure if the cost of an
attack outweighs the value of the encrypted data.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

measured and encrypted by neighboring nodes. We note
that non-tamper-resistant sensor nodes can be compro-
mised and have their contents revealed by an attacker (such
as public keys and current unencrypted measurements).
However, it should not be possible to learn (encrypted)
aggregated values from the compromise of a single node or
a minor fraction of the WSN. The lifetime criteria relate to
the lifetime of nodes, as computations and especially
communication are energy intensive. By performing in-
network aggregation, nodes avoid having to forward every
received packet toward the reader, thereby drastically
reducing the overall bandwidth consumption.

Next, we will examine potential cryptoscheme candi-
dates that meet some of the desired criteria outlined in this
section. None of the discussed candidates meets all the
desired criteria.

5 ENCRYPTION TRANSFORMATIONS

5.1 Symmetric Homomorphic Encryption
Transformations

Symmetric PH schemes require identical secret information
for encryption and decryption. In this section, we present
four schemes that have the additive PH property and
promise to be suitable for the application in WSNs.

5.1.1 Domingo-Ferrer Scheme

In [11], Domingo-Ferrer introduced a symmetric PH scheme
(DF) that has been proposed as efficient PH cryptographic
system for WSNs in [16]. The PH is probabilistic, which
means that the encryption transformation involves some
randomness that chooses the ciphertext corresponding to a
given cleartext from a set of possible ciphertexts.

Domingo-Ferrer (DF) algorithm [11]

Parameter: public key: integer d � 2, large integer M

secret key: k ¼ ðr; gÞ
small g that divides M; r so that r�1 exists in ZZM

Encryption: split m into d parts m1 . . .md thatPd
i¼1ðmiÞmod g ¼ m

C ¼ ½c1; . . . ; cd� ¼ ½m1rmod M;m2r
2 modM;

. . . ;mdr
d modM�

Decryption: m ¼ ðc1r
�1 þ c2r

�2 þ . . .þ cdr�dÞmod g

Aggregation: Scalar addition modulo M

C12 ¼ C1þ C2 ¼ ½ðc11 þ c21ÞmodM; . . . ;

ðc1d þ c2dÞmodM�
The set of cleartext is ZZg, and the set of ciphertext

is ðZZMÞd.
DF has both the additive and the multiplicative

PH properties. For the ciphertext multiplication, all terms
are cross-multiplied in ZZg, with the d1-degree term by a
d2-degree term yielding a ðd1 þ d2Þ-degree term. Terms
having the same degree are added up.

DF is a symmetric algorithm that requires the same
secret key for encryption and decryption. The aggregation is
performed with a key that can be publicly known, i.e., the
aggregator nodes do not need to be able to decrypt the
encrypted messages. However, it is required that the same
secret key is applied on every node in the network that
needs to encrypt data. The message size is d � n bit. For very

secure parameter combinations (d > 100), the messages
become very big [31]. However, Girao et al. [16] showed
that with reasonable parameters it also fits the needs of
constrained devices.

5.1.2 Castelluccia-Mykletun-Tsudik Scheme

Castelluccia, Mykletun, and Tsudik [7] propose a simple
and provably secure additively homomorphic stream
cipher that allows efficient aggregation of encrypted data.
The main idea of the scheme is to replace the exclusive-OR

(XOR) operation typically found in stream ciphers with
modular addition ðþÞ. Since this new cipher only uses
modular additions (with very small moduli), it is very well
suited for CPU-constrained devices.

Castelluccia, Mykletun, Tsudik (CaMyTs) algorithm [7]

Parameter: select large integer M

Encryption: Message m 2 ½0;M � 1�,
randomly generated keystream k 2 ½0;M � 1�
c ¼ ðmþ kÞmodM

Decryption: Decðc; k;MÞ ¼ c� kðmod MÞ
Aggregation: Let c1 ¼ Encðm1; k1;MÞ and

c2 ¼ Encðm2; k2;MÞ
For k ¼ k1 þ k2, Decðc1 þ c2; k;MÞ ¼ m1 þm2

It is assumed that 0 	 m < M. Due to the commutative
property of addition, the above scheme is additively
homomorphic. In fact, if c1 ¼ Encðm1; k1;MÞ and c2 ¼
Encðm2; k2;MÞ, then c1 þ c2 ¼ Encðm1 þm2; k1 þ k2;MÞ.

Note that if n different ciphers ci are added, then M must
be larger than

Pn
i¼1 mi; otherwise, correctness is not

provided. In fact, if
Pn

i¼1 mi is larger than M, decryption
will result in a value m0 that is smaller than M. In practice, if
p ¼ maxðmiÞ, then M should be selected as M ¼ 2dlog2ðp
nÞe.

The keystream k can be generated by using a stream
cipher, such as RC4, keyed with a node’s secret key si and a
unique message ID. This secret key is precomputed and
shared between the node and the sink, while the message ID
can either be included in the query from the sink or it can be
derived from the time period in which the node is sending
its values in (assuming some form of synchronization).

5.1.3 Authenticated Interleaved Encryption-Based

Scheme

One limitation of the previous proposal is that the identities
of the nonresponding nodes (or responding nodes, which-
ever is expected to be smaller) need to be sent along with
the aggregate to the sink. If the network is unreliable, this
can represent an important overhead and scalability
problem. It is therefore important to devise methods for
reducing this cost.

In Authenticated Interleaved Encryption (AIE) [8], or, very
similar, in [23], each node shares a pairwise key with its
direct parent, its two-hop parent, three-hop parent, . . . , and
n-hop parent, where n is a system parameter. These keys
can be established using a scheme such as [13].

When a sensor, Ni, sends a message, it encrypts it n-time
using the additively homomorphic scheme described in [7].
The first time with the key it shares with its direct parent,
the second time with the key it shares with its two-hop
parent, . . . , the nth time with the key its shares with its

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 25

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

n-hop parent. The sensor sends the result ci to its parent
along with its identifier.

An aggregator Ai adds up all the ciphers cl it receives
from all of its direct children. It then decrypts the results
using the sum of the pairwise keys it shares with each of
its direct children, two-hop children, . . . , n-hop children.
The result is then encrypted n times with the keys it
shares with its parent, two-hop parent, . . . , and nth. The
result is forwarded to Ai’s parent along with the
identifiers of the children that have contributed to the
resulting cipher. The messages get then securely aggre-
gated hop-by-hop until the sink.

With the AIE scheme, each aggregator has to forward
at most

Pn�1
i¼1 d

i identities, where d is the degree of the
tree, i.e., number of children per node. This is much less
than the CaMyTs scheme. In the original CaMyTs scheme,
the number of identities to be forwarded increases as the
aggregated message gets closer to the root. At the level h
of the tree (h ¼ 0 being the leaves), OðdhÞ identities have
to be forwarded by each aggregator. If the aggregator tree
has many levels, this can become problematic. In contrast,
with AIE, the number of identities to be forwarded is
bounded and only depends on the parameters n and d,
where d is smaller than h.

Note, however, that the AIE-based scheme is less secure
than the original scheme. An attacker that corrupts
n consecutive nodes can actually retrieve the aggregated
value at the lowest corrupted aggregator in the tree. With
the original scheme, corrupting aggregators does not reveal
any information about the aggregated value.

There is a clear trade-off between the number of
identities to be forwarded (i.e., bandwidth cost) and
security. By decreasing n, the bandwidth cost decreases
but so does the security. By increasing n, the bandwidth
cost and security increase. If n ¼ 1, the AIE scheme is
similar to hop-by-hop encryption. This configuration is
optimal in terms of bandwidth but very weak security-wise.
On the other hand, if n ¼ h (where h is the number of level
in the tree), the AIE scheme is similar to the original
aggregation scheme in [7]. Its bandwidth cost is high, but its
security is maximum.

5.1.4 Hybrid Symmetric PH Approach

In [26], an approach has been proposed that combines two
known PH algorithms. It is the notion to increase the
security and cope with security issues of single PHs by
performing cascaded encryptions. The idea of this action is
to combine the advantages of both cryptoschemes. Con-
sidering that one scheme is vulnerable to one attack and
another scheme has another weakness, the combined
algorithm can cover both issues.

Considering we have two PH encryption transforma-
tions E1 : K1 �Q1 !R1 and E2 : K2 �Q2 !R2 with cor-
responding decryption and properties as described in
Section 2. A cascaded PH is the successively performed
execution of both encryption functions that results in the
transformation EC : K2 �K1 �Q1 !R2 sustaining the
homomorphic property:

EK2 EK1ðaÞð Þ � EK2 EK1ðbÞð Þ ¼ EK2 EK1ðaþ bÞð Þ

and

aþ b ¼ DK1 DK2 EK2 EK1ðaÞð Þ �EK2 EK1ðbÞð Þð Þð Þ:

EK1 stands for the inner cryptographic algorithm and EK2

for the outer one. This means that the plaintext a is
encrypted with algorithm E1 and the resulting ciphertext is
encrypted again with algorithm E2, while preserving the
homomorphic property corresponding to the algebraic
operation þ.

Such a chain has some requirements on the encryption
transformation: both encryption schemes must be additive
PH, and the ranges of results of inner encryption E1 must fit
to the domain of E2, i.e., R1 ¼ Q2.

As an example, the combination of CaMyTs and DF is
demonstrated. As we will see in Section 7, this combination
results in a very secure CDA approach that is still suitable
to lightweight devices.

The DF/CaMyTs combination is algebraically sound
since CaMyTs as E1 encryption maps the plaintexts that are
in ZZn E1 : ZZn ! ZZn, and DF uses the resulting ciphertexts
for its encryption E2 : ZZn ! CC, while CC is a usual known
DF ciphertext.

It should be mentioned that an aggregation operation
for DF/CaMyTs performed on an aggregation node
requires exactly the same effort as for the standalone DF.
It is not necessary to consider the embedded CaMyTs
encryption. Since most security concerns are already
covered by CaMyTs, the DF parameters, especially the
setting parameter d, do not need to be too big. Thus, the
potential ciphertext expansion is moderate.

However, with both encryption methods, there are
indeed the technical problems of both approaches. With
d > 1, the encrypted message size increases and there is still
the ID issue to indicate nonresponding nodes.

CaMyTs þ Domingo-Ferrer (CaMyTs/DF) algorithm [26]

Parameter: public key: large integer M, d � 2

secret key: g that divides M; r so that r�1 exists

in ZZM
Encryption: randomly generated keystream k 2 ½0;M � 1�

e1 ¼ ðkþmÞmodM

split e1 into d parts m1 . . .md that
Pd

i¼1ðmiÞmod

g ¼ e1 C ¼ ½c1; . . . ; cd� ¼ ½m1rmodM;m2r
2 mod

M; . . . ;mdr
d modM�

Aggregation: scalar addition modulo M (like DF)

Decryption: d1 ¼ ðc1r
�1 þ . . .þ cdr�dÞ mod g

m ¼ ðd1 � kÞmodM

where k is the sum of aggregated
keystreams

5.2 Asymmetric Homomorphic Encryption
Transformations

In light of inevitable problems connected with key
distribution and synchronization required for symmetric
encryption schemes, we are encouraged to revisit the use of
public key encryption schemes that

1. are additively homomorphic (allowing for in-
network aggregation of particular aggregation
functions),

2. exert the required security levels,
3. involve relatively cheap computations,

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

4. are probabilistic,
5. produce relatively short ciphertexts, and
6. by nature of public key methodology, require no

sensitive key material to be stored at encrypting
sensors.

We are especially interested in the use of elliptic curve
cryptoschemes, due to 1) their use of small keys, which
leads to short ciphertexts, 2) the smaller real estate required
for hardware implementations (number of gates), and 3) a
better security-per-bit ratio.

A large subgroup of asymmetric PHs is the family of
high degree residuosity class-based cryptographic algo-
rithms, for example from Paillier [24], Benaloh [5], Naccache
and Stern [22], and Okamoto and Uchiyama (OU) [29].
Though all these public key schemes provide the additive
PH, we only describe the latter one, since all algorithms
exploit similar mathematical problems. Additionally, due to
their long keys that imply large messages and high
computation efforts, the application of these schemes in a
WSN scenario is at least questionable, while the OU scheme
shows the most promising results [21].

5.2.1 Okamoto-Uchiyama Scheme

In Eurocrypt ’98, Okamoto and Uchiyama proposed a new
public-key cryptosystem (OU) as secure as factoring and
based on the ability of computing discrete logarithms in a
particular subgroup [29]. Their scheme is characterized by
probabilistic encryption, additive homomorphic properties,
and relating the computational complexity of the encryp-
tion function to the size of the plaintext.

Specifically, for an odd prime p, the p-Sylow sub-
group is defined as �p ¼ fx < p2 j x ¼ 1ðmod pÞg, and
j�pj ¼ p. A function L that maps elements from �p to ZZp
is defined as LðxÞ ¼ ðx� 1Þ=p. Function L has homo-
morphic properties from multiplication to addition. For
elements a; b 2 �p, Lða
 bÞ ¼ LðaÞ þ LðbÞðmod pÞ, and for
c 2 ZZp, LðacÞ ¼ c
 LðaÞ.

Now, let p and q be random k-bit primes and set
n ¼ p2q. For an n of approximately 1,024 bits, a choice of
k could be 341. Next, randomly choose a g 2R ZZn such
that element gp ¼ gp�1ðmod p2Þ has order p. Finally, set
h ¼ gnðmod nÞ. The additive homomorphic property is
achieved through the multiplication of ciphertexts:
Encðm1 þm2Þ ¼ Encðm1Þ � Encðm2Þ.

Okamoto-Uchiyama (OU) algorithm [29]
Parameter: public key: n ¼ p2q; g; h

Private key: ðp; qÞ
Encryption: plaintext m 2 2k,

r 2R ZZn,

ciphertext c ¼ gmhrðmod nÞ
Decryption: c0 ¼ cp�1ðmod p2Þ

compute m ¼ Lðc0ÞLðgpÞ�1ðmod pÞ
Note that cp�1ðmod p2Þ ¼ gmðp�1Þgnrðp�1Þ ¼ gmp ðmod p2Þ

5.2.2 ECC Schemes Suggested by Paillier

In [25], Paillier describes three new probabilistic encryption
schemes that use elliptic curves over rings and exhibit
additive homomorphic properties. All three schemes are
elliptic curve variants of the previously described public
key encryption algorithms, namely those proposed by

Naccache and Stern [22], Okamoto and Uchiyama [29],
and Paillier [24]. Since the encryption schemes in [25] are
implemented over elliptic curves and meet some of our
desired criteria, we describe each and investigate their
applicability for aggregation in WSNs. Common to each
scheme is that the elliptic curve is defined over ZZn or ZZ2

n,
where n is the product of large primes, and that they are
provably secure against chosen plaintext attacks. All three
schemes provide additive homomorphic capabilities
through the summation of ciphertexts. The reader is
referred to [25] for more detailed descriptions of the
cryptosystems.

Elliptic Curve Okamoto-Uchiyama Encryption. The Elliptic
Curve Okamoto-Uchiyama (EC-OU) Encryption uses the
fact that discrete logarithms are easy to compute in curves
Epðap; bpÞ over Fp, which have trace of Frobenius one
(anomalous curves)2, where values ap, bp denote a particular
curve. Paillier extends this discrete logarithm recover ability
property to a p-subgroup of Ep2ða; bÞ such that the projection
onto Fp gives the twist of an anomalous curve.

Define n ¼ p2q, where p, q are large 341-bit primes, and
p � 2ðmod 3Þ. Values ap, bp 2 Fp are chosen such that
Epðap; bpÞ is of order pþ 2. A random curve Eqðaq; bqÞ along
with a lift Ep2ðap; bpÞ of Epððap; bpÞ to Fp2 is chosen. Then, by
using the Chinese Remainder Theorem (CRT), Ep2ðap; bpÞ
and Eqðaq; bqÞ are combined to get the curve En ¼ Enða; bÞ,
where a; b 2 ZZn. A base point G 2 En of maximal order
lcmðjEp2 j; jEqjÞ is chosen and H ¼ nG. The cryptosystem’s
security can be shown equivalent to factoring n ¼ p2q.

Elliptic Curve Okamoto-Uchiyama (EC-OU) algorithm

Parameter: Public key: n ¼ p2q;G;H;En

Private key: p

Encryption: plaintext m < 2k�1,

r 2R 22k,

ciphertext C ¼ mGþ rH
Decryption: compute m ¼ pððpþ2ÞCÞ

 pððpþ2ÞGÞ ðmod pÞ
where pðx; yÞ ¼ � x

y ðmod p2Þ and has the

property

that if P ¼ mG for arbitrary points P , G, then

m ¼ pðP Þ
 pðGÞ ðmod pÞ

provided that G 6¼ Op2 .

Elliptic Curve Naccache-Stern Encryption. Elliptic Curve
Naccache-Stern Encryption (EC-NS) is constructed in a
manner similar to KMOV [19], whereby factoring-based
algorithms are exported to particular families of elliptic
curves.3 The applicable curves have the following
specific form:

Enð0; bÞ : y2 ¼ x3 þ bðmod nÞ; for b 2 ZZ
n

with p � q � 2ðmod 3Þ and � ¼ jEnð0; bÞj ¼ lcmðpþ 1; q þ 1Þ.
Further requirements are given as follows:

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 27

2. Specifically, such a computation of discrete logarithms requires
Oðlog3 pÞ-bit operations.

3. The KMOV paper introduced elliptic curve schemes that, like the RSA
cryptosystem, base their security of the difficulty of factoring a value
n ¼ pq, where p and q are large primes. This differs from typical ECC
solutions that base themselves on the computationally hard discrete
logarithm problem.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

pþ 1 ¼ 6� u� p0; where u ¼
Y

p�ii

q þ 1 ¼ 6� u� q0; where u ¼
Y

q
�j
i

for B-smooth integers4 u and v of (roughly) equal bit
size such that gcdð6; u; v; p0; q0Þ ¼ 1, primes p0; q0, and
B ¼ OðlognÞ. By the properties of primes p and q, the
two curves Epð0; bÞ and Eqð0; bÞ are cyclic groups of
orders pþ 1 and q þ 1, respectively.

Let G be a (base) point of Enð0; bÞ such that its order is a
multiple of � ¼ uv. Then, encryption of a plaintext m 2 ZZ�
can be realized as

EncðmÞ ¼ C ¼ ðmþ �rÞG; where r 2R Enð0; bÞ:

Because � is B-smooth, it is possible to efficiently compute
discrete logarithms for a base of degree � by using a
combination of the baby-step giant-step and Pohlig-Hell-
man algorithms [20]. Thus, with the knowledge of �,
decryption can be accomplished by computing the discrete
logarithm of ð�=�ÞC with respect to the base G0 ¼ ð�=�ÞG.
The security of the scheme is equivalent to computing
residue classes on Enð0; bÞ. The following outlines the
cryptosystem:

Elliptic Curve Naccache-Stern (EC-NS) algorithm

Parameter: Public key: n ¼ pq; b; �;G;Enð0;bÞ
Private key: ðp; qÞ or � ¼ lcmðpþ 1; q þ 1Þ

Encryption: plaintext m 2 ZZ�,

r 2R ZZn,
ciphertext C ¼ ðmþ �rÞG

Decryption: compute u ¼ ð�=�ÞC ¼ mG0.
Use Pohlig-Hellman and baby-step giant-step

to compute the discrete log of u in base G0

Elliptic Curve Paillier Encryption. The cryptoscheme

Elliptic Curve Paillier (EC-P) extends the settings of EC-

OU to curves defined over ZZn2 , where n ¼ pq and p, q are

large primes with the properties that p � q � 2ðmod 3Þ.
Values ap; bp 2 Fp and aq; bq 2 Fq are chosen such that

Epðap; bpÞ is of order pþ 2 and Eqðaq; bqÞ is of order q þ 2.

The lifted curves Ep2ðap; bpÞ and Eq2ðaq; bqÞ are chosen and

combined to get En2ða; bÞ. A base point G 2 En2 of order

divisible by n is chosen, possibly of maximal order n�,

where � ¼ �ðnÞ ¼ lcmðpþ 2; q þ 2Þ. The security of EC-P is

based upon the problem of computing residuosity classes

over En2 . Here is the scheme:

Elliptic Curve Paillier (EC-P) algorithm

Parameter: Public key: n ¼ pq;G;En2

Private key: � ¼ lcmðpþ 2; q þ 2Þ or

equivalently ðp; qÞ
Encryption: plaintext m 2 ZZm,

r 2R ZZn,

ciphertext C ¼ ðmþ nrÞ
Decryption: compute m ¼ nð�CÞ

 nð�GÞ ðmod nÞ
It is important to note that in [14], Galbraith shows that

the use of anomalous curves in the way it is described in the
two schemes above is insecure. The attack reveals the

private key by efficiently extracting it from the public key.
Although the same author proposes a variation of the EC-
P scheme, this new scheme is not as efficient and, therefore,
requires too much computation for the scenarios we are
considering.

5.2.3 Elliptic Curve ElGamal Encryption Scheme

A very different cryptoscheme working on elliptic curves is
the elliptic curve ElGamal encryption scheme (EC-EG). It is
equivalent to the original ElGamal scheme [12] but
transformed to an additive group. Key setup consists of
choosing an elliptic curve E together with a prime p and
generator G. Its security is based upon the Elliptic Curve
Discrete Log Problem (ECDLP).

Elliptic Curve ElGamal (EC-EG) algorithm [21]

Parameter: Public key: E, p, G, Y ¼ xG, where G; Y 2 Fp
Private key: x 2 Fp

Encryption: plaintext M ¼ mapðmÞ,
k 2 Fp,
ciphertext C ¼ ðR;SÞ, where

R ¼ kG, S ¼M þ kY
Decryption: M ¼ �xRþ S ¼ �xkGþM þ xkG,

m ¼ rmapðMÞ
EC-EG is additively homomorphic, and ciphertexts are

combined through addition. The summation of two EC-EG
ciphertexts requires two point additions, namely one for
each of the ciphertext components R and S.

map() refers to the mapping function used to map values
(e.g., plaintexts) into points on the curve and vice versa. This
mapping needs to be deterministic such that the same
plaintext always maps to the same point. Additionally, the
function needs the following property to hold: for all
a1; a2 2 Fp, mapða1 þ a2Þ ¼ mapða1Þ þmapða2Þ. An applic-
able homomorphic mapping function is proposed by
VoteHere in [2] and is based upon using multiples of a
generator element to represent mapped values. The ap-
proach is to map plaintext value j to the EC point jG, and
reverse mapping entails extracting j from jG. This realizes
our desire for a homomorphic mapping function as the
following operations hold: for i; j 2 Fp; ðiþ jÞG ¼ iGþ jG,
where p is the prime defining the curve. However, the
demapping of the mapped point jG back to j is not trivial.
Since it is the fundamental property of ECC that the point
multiplication is not efficiently invertible, the only solution is
a brute force computation that relies on a limited domain of
the mapping. In most cases, this approach is very reasonable.

5.2.4 Comparison of Asymmetric Schemes

Table 2 compares the performance of the described public key
homomorphic encryption candidates applying the results
from [21]. All table entries consist of two values: 1) the
formulas used to determine the respective costs and 2) the
actual number of computations and bits transmitted when
applying the formulas to our set of assumed values, as
described below. The formulas refer to parameters of the
respective schemes, i.e., the p in EC-EG refers to the 163-bit
modulus defining the elliptic curve, while the p in EC-OU is
the (typically) 341-bit prime that is used to construct the
modulus n. All computations (the second part of the entries)
are converted to and measured in terms the number of

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

4. An integer is said to be B-smooth if all its prime factors are 	 B.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

base units (1,024-bit modular multiplications). Note that the

formulas for EC-EG and EC-P reflect the number of 163-bit

and 2,048-bit modular multiplications, respectively.5

Parameters have been selected such as to obtain an equal

1,024-bit security level among all schemes and to reflect an

envisioned WSN setting. For EC-NS, EC-OU, EC-P, and

OU, primes p and q are selected such that jnj ¼ 1;024, while

we use one of the standard (IEEE) ECC curves over F163

defined in [11]. Random nonces are assumed to be 80 bits

while plaintexts m are 8-bit values.
The results show that EC-EG benefits from its smaller

modulus operations in both ciphertext size and computation

efforts. However, the table does not reflect the costs for the

demapping function. In a scenario where thousands of nodes

send values in a big domain, EC-EG requires significantly

more computation power for the decryption than other

schemes, unless an improved mapping/demapping func-

tion can be found. In small WSNs, EC-EG can be recom-

mended, especially if the decryption is performed on a

powerful base station.
Further, the table shows that OU is the best scheme if

EC-EG cannot be applied, e.g., in very large networks.

EC-P provides the fastest decryption, while encryption

and required bandwidth are not acceptable for con-

strained devices.

6 KEY MANAGEMENT

Various key predistribution (KPD) schemes for wireless

multihop ad hoc networks have been proposed. Although

different KPD proposals support varying keying models

like pairwise keying, groupwise keying, or a single

network-wide key, the majority of the KPD proposals are

designed for securing pairwise unicast traffic [13]. More

concretely, by e.g., applying the concept of key rings, they

ensure with a reasonable high probability the establishment

of a trust relationship over various intermediate nodes to

allow a secured unicast multihop channel. Such KPDs are

most valuable in MANETs. Only a few KPDs have been

proposed that support the encryption of convergecast

traffic with in-network processing. We describe some KPDs

for CDA by following the classification introduced in

Section 2.

6.1 KPD for Groupwise Keying

Currently, only one KPD for groupwise keying is known,

which supports encryption transformations fulfilling (1).

6.1.1 Topology Aware Groupwise Keying

The Topology Aware Group Keying (TAGK) [32] supports the

usage of a symmetric privacy homomorphic encryption

transformation for securing convergecast traffic with in-

network processing. TAGK distributes keys per “routable”

region. The scheme is extremely robust against exhausting

nodes, and it provides a higher system security compared

to single-hop-based encryption approaches. However, since

TAGK is designed to support a symmetric privacy

homomorphic encryption transformation that requires the

same key for all the encrypting parties that originate

convergecast traffic, in particular for WSN applications

requesting highest system security, there is a strong need

for conceptual enhancements.
Before nodes are spread out over a geographical region,

the manufacturer preconfigures at each node the same pool

of keys and their key IDs. The key pool is limited by the

storage space of the destination platform. Next, the WSN is

rolled out such that all nodes are randomly distributed over

a region, placing nodes in approximately uniform positions.

Each node stores the same key pool and its key IDs. Once

the nodes are spread out over a region, they remain static

and the bootstrapping phase starts. This phase includes the

election of active nodes, e.g., the first run of the adaptive self-

configuring sensor networks topologies (ASCENT) protocol [9],

and the election of aggregator nodes, e.g., with the low

energy adaptive clustering hierarchy (LEACH) protocol [17]

and a simple “going down” routing protocol initialization.

In addition, a subset of nodes with distance i ¼ 1 to the sink

node randomly chooses a key list fk1; . . . ; krg 2 K
 and

locally broadcasts the key identifiers to nodes within

distance iþ 1. As a probability function of the distance i

and the maximum expected distance l to the sink node,

receiving nodes either delete the whole key pool or

randomly choose one k 2 fk1; . . . ; krg and delete the

remaining keys. Nodes that did not receive a message

IDk1
k . . . kIDkr during a particular time frame after the

network’s roll out delete their key pool. This ensures that

unreachable nodes do not store sensitive data.

6.2 KPD for Unique Keying

A KPD that supports unique keying is required in case the

CDA encryption transformation is a PH from (2). Since

pairwise keys are used, the highest achievable system

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 29

5. As modular multiplications with 2,048-bit moduli are approximately
four times more expensive than with 1,024-bit moduli, we convert the
fourteen 2,048-bit modular multiplications in the decryption in EC-P to
fifty-six 1,024-bit modular multiplications.

TABLE 2
Performance Comparison of Candidates: 1) Formulas and 2) Number of

Computations (1,024-Bit Modular Multiplications) and Bandwidth (Number of Bits)

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

security is provided. Available candidates are given in
Sections 6.2.1 and 6.2.2.

6.2.1 Random Unique Keying

In this KPD, keys are randomly distributed [7] to the nodes
and only the sink node needs to store all the keys. Since the
storage of keys on the nodes is independent of the final
position of the nodes, the KPD reduces to a simple storage
of different unique keys before the nodes’ deployment.
Obviously, such a simple KPD is nearly perfect for highly
self-organizing distributed environments. In addition, from
the security perspective, a pairwise keying model for
convergecast traffic is preferable since it provides a higher
system security. However, the benefit of the overall system
security comes at the cost of additional overhead. First, the
nodes’ configuration before node deployment requires a
pairwise pairing between each sensor node and the sink
node to agree on the shared key. Second, since we are
aiming at security solutions over a highly unreliable
medium, one cannot ignore the impact of packet loss on
the wireless broadcast medium. Revealing per data trans-
mission the key IDs, respectively, node IDs of all the
currently involved nodes therefore becomes mandatory.
The usage of the CaMyTs scheme in the AIE operation
mode is aiming at reducing the data overhead at the cost of
reduced security. The required KPD for such a key setting
can be achieved, e.g., by running the key management
scheme from Eshenauer and Gligor [13].

6.2.2 Unique Keying with Algebraic Structuring

The Topology Aware Unique Keying (TAUK) [4] solution does
neither require additional data overhead for key IDs when
sending encrypted convergecast traffic nor does it require
an extensive key setting before the node deployment. It can
be used for a double homomorphic encryption transformation
(DHET) [4]. One derivate of DHET is derived from the
CaMyTs approach. At the same time, this approach is
robust against exhausted nodes and an unreliable broadcast
medium where sometimes data from a child node may not
reach an aggregator node.

In the initialization phase, it is assumed that each sensor
node N already knows its direct neighbors PredðNÞ and
SuccðNÞ. Subsequently, each node receives a single
symmetric key, whereas all keys from the sensor nodes
are derived from a master key, which is solely stored at
the sink node. In addition to its key, each node stores
encrypted default values. Each of such ciphers corre-
sponds to an N 0 2 SuccðNÞ. They provide robustness
during the aggregation phase. During the initialization
phase, the system is highly vulnerable, even to passive
attacks. During an aggregation phase, convergecast traffic is
encrypted end-to-end from the sensing nodes to the sink
node. Each node N applies a PH by encrypting its
monitored value with its own unique key and by
subsequently summing up the resulting ciphertext to the
received ciphertexts from its children SuccðNÞ. Since each
node purely stores its own key, it cannot decrypt the
incoming ciphers from its children. Only the sink node is
enabled to decrypt the final aggregated value by applying
the master key to the received ciphers. Since not always all
nodes may have contributed or due to interference on the

wireless transmission medium packets may get lost, each

intermediate node adds those stored default ciphers to the

aggregated ciphered sum, which correspond to its direct

children and which have not provided their input. During

an aggregation phase, the system is secure against passive

and active attacks.

6.3 Public Private Keying

In cases where an asymmetric additively homomorphic

encryption transformation [see (3)] shall be applied to secure

convergecast traffic within the WSN, it is preferable that a

public/private key pair is generated at the sink node and the

public key is loaded on each sensor node. Typically, this

happens before the rollout of the sensor nodes. However,

even a flooding of the public key after the deployment of the

WSN is possible.

6.4 Classification

Fig. 3 classifies the discussed KPDs and the corresponding

encryption transformations with respect to their provided

system security and its data overhead. Since a key manage-

ment based on public private keys does not fit to the criteria

depicted in this figure, we do not consider it here. Note that

a detailed discussion on the provided security of the

concrete encryption transformation follows in Section 8.

The CaMyTs [7] together with KPD unique keys provides

strong security at the cost of high data overhead. It therefore

belongs to category 2. Running it in the modes “n-hop key

relation” with AIE [8] and OeMo [23] reduces the data

overhead while it weakens the system security at the same

time. We therefore see it at the edge between category 2 and

category 4. The approaches [7] and [23] provide a moderate

system security at a moderate to high data overhead during

an aggregation phase. Whereas for PH [7] the KPD is as

simple as possible since keys can be randomly stored on the

node before deployment, OeMo [23] and AIE [8] require a

complex and structured storing policy of keys without

providing a clear solution how keys can be distributed in

such a way.

30 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Fig. 3. Taxonomy of symmetric privacy homomorphic encryption

schemes and their relation to KPD schemes.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

7 DISCUSSION OF CDA APPROACHES

7.1 Evaluation of Security Aspects

In the following, we pick up the brief classification of attack

scenarios described in Section 3 and evaluate to what extent

the PH schemes are resistant or vulnerable. Additionally to

the symmetric approaches DF, CaMyTs, and DF/CaMyTs,

we evaluate EC-EG and OU as the most preferable asym-

metric schemes.

7.1.1 Ciphertext Analysis

The analysis of eavesdropped ciphertexts is the most

straightforward attack on cryptographic schemes. This is

why it is absolutely necessary that the schemes are resistant

to these attacks. To our knowledge, all discussed schemes

are not vulnerable to this attack.
All five evaluated PH schemes, DF, CaMyTs, DF/

CaMyTs, OU, and EC-EG, are probabilistic schemes, i.e., if

the same plaintext is encrypted more than once it results in

randomly distributed ciphertexts. This feature makes a

cryptoanalysis much more complicated because statistical

information is covered by the injected randomness. How-

ever, the source of the randomness seems to be the biggest

threat concerning the pure ciphertext analysis. If it is

possible to predict the next random numbers, it would

imply a total break of OU, EC-EG, and CaMyTs and

significantly weaken DF. Nevertheless, we consider all

schemes as secure regarding the pure ciphertext analysis

threat.

7.1.2 Known Plaintext Attack

Since in a WSN there are several ways of obtaining plaintext

for a ciphertext, the known plaintext attacks are not only a

hypothetical kind of attack.
Studies [31] show that in particular DF is very vulnerable

to known plaintext attacks. Depending on the applied system

parameters, a set of plaintexts with corresponding cipher-

texts is sufficient to deduct the secret key. Wagner [31] also

showed secure combinations of parameters. However, these

parameters would imply message sizes of more than 1 Mbyte

per message, which make them useless in WSNs. For

CaMyTs, no actual attack of this type is known. However,

with known plaintexts, an adversary can isolate the random

streams, which could help deduct the key of the pseudoran-

dom number generator.
With regard to DF/CaMyTs, we presume that there is no

threat connected with known plaintexts. The DF part of the

algorithm covers the random stream and the randomization

of CaMyTs avoids the dangerous known plaintext vulner-

ability of DF.
Both asymmetric schemes (EC-EG and OU) are well-

known and well-evaluated cryptographic algorithms. Since

no known plaintext weaknesses have been published, it can

be presumed they are secure regarding this attack. Anyway,

the public key character of these schemes necessitates that

the scheme is not vulnerable to known plaintext attacks

because everyone is able to generate ciphertext/plaintext

pairs.

7.1.3 Replay Attacks

Resending of previously sent packets with malicious

intention is the easiest active attack. Consider the potential

threats such replay attacks are posing (e.g., pretending in

motion detection scenario), it is very desirable to have a

protection against this issue.
CaMyTs and DF/CaMyTs have a resistance to such

attacks, because every new ciphertext applies a new key. A

previously sent packet encrypted with the current key will

usually result in an unreasonable decrypted text, which can

be recognized by the receiver.
DF, OU, and EC-EG do not have any inner protection

against replayed or doubled packets. The additional integra-

tion of timestamps, sensor IDs, or a challenge/response

system may help cope with the problem. However, the

integration of such a feature or protocol in a CDA

environment is not straightforward.

7.1.4 Malleability

In the description of this attack, we mentioned the example

where the adversary wants to increase the measured

temperature by 20 �C.
In EC-EG, such an attack can be performed very well.

Consider the public key ðE; p;G; Y ¼ xGÞ and the mapping

function M ¼ mG. Then, the encrypted message is the pair

½kG; kY þmG�:

In order to obtain an encrypted value that is increased by

20, one can simply perform

kG; kY þ ðmþ 20ÞG½ � ¼ ½kG; kY þmG� þ ½0; 20G�:

CaMyTs is also vulnerable to this attack. A ciphertext ðmþ
KnÞmodM can easily altered by

ðmþ 20Þ þKnð ÞmodM ¼ ðmþKnÞ þ 20 modM:

For OU, the content m of the ciphertext c ¼ gmhrðmod nÞ can

be modified by multiplying or dividing g that is part of the

public key. Thus, OU is not secure against this attack.
DF and DF/CaMyTs are not vulnerable to this attack due

to the architecture of the algorithm. In order to modify the

content of a ciphertext, an adversary needs a part of the

secret key ðrÞ.

7.1.5 Unauthorized Aggregation

This kind of attack that is very specific for PH schemes

actually is only a variation of the malleability we described

in Section 7.1.4. Instead of adding just 20, the idea of this

attack is to add another ciphertext that contains 20. EC-EG

allows one to add two messages unnoticed by doing

ðk1 þ k2ÞG; ðk1 þ k2ÞY þ ðm1 þ 20ÞG½ � ¼
½k1G; k1Y þm1G� þ ½k2G; k2Y þ 20G�:

However, the aggregated random parts ðk1 þ k2Þ could

somehow be noticed by the receiver, so that the interference

may be detectable.
Likewise, OU and DF do not have any protection against

unauthorized aggregation. An attacker can take any two

ciphertexts and aggregate them without leaving marks.

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 31

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

Since the decryption of CaMyTs and DF/CaMyTs
expects a specific embedded key, unauthorized aggregation
would lead to damaged packets that do not contain a
reasonable plaintext. This is why CaMyTs-based algorithms
are not affected by this attack.

7.1.6 Forge Packets

Indeed, there is no need to modify existing packets if it is
possible simply to generate proper ciphertexts. Naturally,
asymmetric schemes like EC-EG and OU do not have any
protection against the problem of forged packets. This is
why in environments where the integrity of received
messages is important EC-EG and OU must not be applied
without additional protection. DF has secret parameters that
are required for the encryption of a plaintext. Though
extensive analysis shows that no approach has been
published that allows one to generate proper ciphertexts
without knowing these secret parameters. However, since
every node in the system uses the same secret keys, it is
considerable to use one (maybe captured) node as oracle that
generates desired ciphertexts, even without having the keys.

Due to the fact that CaMyTs and DF/CaMyTs apply a
new key for every message, these algorithms are resistant to
the forged packet issue. Since additionally every node has
an own stream of keys, it is not even possible to deduct
useful information regarding one node from another one.

7.1.7 Physical Attacks

The group of physical attacks comprises all attacks on the
actual node hardware in order to execute or support an
attack. As already described, DF is severely vulnerable to
such attack because the same secret system keys are used in
every node. A revealed memory content can contain the
secret key and thereby imply a total break of the system.
Alternatively, captured or compromised nodes can be used
as an encrypting or decrypting device.

To EC-EG and OU, such attack is not an important
threat, unless the decrypting node (in most settings the sink
node) that contains the private is attacked. Due to the
asymmetric public key approach, an adversary cannot gain
any additional information that can be used for further
attacks.

Since CaMyTs does not use the same key on two
encrypting nodes, a compromised node does not pose any
additional risk to the system. However, one malicious node
that injects bad messages may be a problem for the system.
Though it is probably detected that something is wrong
with the received message, without additional protocol it is
neither possible to isolate the source of the malicious data
nor to deduct the correct and usable ciphertext. To the best
of our knowledge, it is an unsolved issue for all discussed
PH schemes. DF/CaMyTs comprises the description of DF
and CaMyTs. The DF part can be neglected if the memory is
read, while the CaMyTs part of the algorithm is very secure.

7.2 Comparisons

Table 3 shows a brief evaluation of the described CDA
encryption transformations regarding the set of properties
and the described attack scenarios. Indeed, such an
overview cannot deliver a satisfying assessment for every
situation and parameter combination. For example, the

ciphertext size of CaMyTs is considered as positive.
However, the positive assessment is not justified anymore
in case where many not responding IDs must be
transmitted.

Another controversial point is the computation effort
for EC-EG. Because ECC software implementations are
known to be quite slow, it is assessed with “�”.
However, executed on hardware accelerators, ECC is
very fast. Moreover, in this case, the power consumed
during the computation is even smaller than it is required
for the transmission of the encrypted data packet. Thus, if
hardware accelerators are applied, the computation costs
for ECC can be neglected [27].

Nevertheless, as a result of our evaluation, CaMyTs as
the PH approach with the least computation efforts is also
the most secure stand-alone PH approach. Its only real
weakness is the malleability. In combination with DF as
hybrid CaMyTs/DF even this weakness is solved. For the
many benefits in the security category of the evaluation
table, CaMyTs/DF has to pay in the efficiency category. The
message size is bigger and the computation efforts are
higher.

Actually, in many application scenarios not all properties
must be perfectly fulfilled. In case only a simple encryption
is wanted and an active attack, which is connected with
considerable expenses, is not a probable threat, all four
algorithms are reasonable. In such a case, side constraints
could favor one algorithm or another. For example, since
ECC is already part of the tinyOS operating system module
tinySec, this makes the usage of EC-EG very reasonable.

More specific recommendations about possible applica-
tion scenarios are presented in Section 7.3.

7.3 Application Recommendations

In a synchronous sensor network, the values are fluctual and
adding security should not impact the reactive and real-
time responsiveness of the system. For this reason, and due
to the very restricted lifetime of the values, the authors
support the application of symmetric PHs or a hybrid one
with all its security weaknesses but with performance
benefits. The matter of applying a similar scheme to layered
topologies that require in-network decryption is one that we
believe is not solvable by these approaches.

As to asynchronous sensor networks, we believe we have
to consider the problem when applied to a flat and to a
layered topology separately. Layered topologies may require

32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

TABLE 3
Comparison of Various PH Algorithms

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

intermediate nodes to be able to decrypt values. In the
previous sections, limitations on decryption, related to the
value space and algorithm, are presented for EC-EG,
which make the decryption operation unsuitable for
implementation on the sensor nodes. We consider that
in this case, the best candidate is OU since it provides the
best ratio between encryption and decryption costs. This
comes at the cost of a bigger ciphertext size, which we still
consider acceptable for applications that require only
seldom polling and aggregation of the values.

In a flat distribution of the network, we have to consider
the threshold at which the constant addition of the values,
or the initial size of the sensed values, affects the feasibility
of decryption. The primary candidate, both in computation
effort and bandwidth, is EC-EG. However, this scheme
suffers from an expensive mapping function during
decryption, which, in some cases, may become too costly
to revert. Once this threshold is reached, we believe that OU
is another possible candidate. The ciphertext size pushes it
to a second, still viable, solution, where applying EC-EG is
no longer possible. Fig. 4 provides a summary.

Finally, the application has a direct impact on the
concrete CDA scheme to use. Calculating the minimum
and maximum, as stated in [16], is not possible to achieve
due to an inherent problem of using PHs. For such
applications, we propose the usage of a scheme proposed
in [1], which makes use of an Order Preserving Encryption
Scheme [3] and applies it to a sensor network scenario.
When calculating the variance, the problem of the value
space appears once again: Since the aggregated data is
actually the square of the sensed value, the value space
doubles and may easily reach values no longer feasible for
applying EC-EG. This case would be another possibility
where OU can be applied.

8 CONCLUSION

CDA is a powerful mean for protecting WSNs with in-
network processing. In this paper, we have discussed
symmetric and asymmetric privacy homomorphic encryp-
tion transformations and gave recommendations regarding
their usage in concrete application settings. Some are more
preferable for usage in real-time responsive scenarios,

whereas others are preferable in a time uncritical setting

with a relatively seldom transmission of data. We have

discussed a set of key management approaches that is

particularly suited for CDA in WSNs.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the

European Commission within the STReP UbiSec&Sens of

the EU Framework Program 6 for Research and Develop-

ment (IST-2004-2.4.3). The views and conclusions contained

herein are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of the

UbiSec&Sens project (http://www.ist-ubisecsens.org) or

the European Commission. The authors would like to thank

Joao Girao, Einar Mykletun, and Mithun Acharya who were

involved in the earlier work, which provided the ground for

this survey.

REFERENCES

[1] M. Acharya, J. Girao, and D. Westhoff, “Secure Comparison of
Encrypted Data in Wireless Sensor Networks,” Proc. Third Int’l
Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), 2005.

[2] J.M. Adler, W. Dai, R.L. Green, and C.A. Neff, “Computational
Details of the VoteHere Homomorphic Election System,” Proc.
Ann. Int’l Conf. Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2000.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving
Encryption for Numeric Data,” Proc. ACM SIGMOD, 2004.

[4] F. Armknecht, J. Girao, and D. Westhoff, “Topology Aware Key
Management for Homomorphic Encryption of Convergecast
Traffic in Wireless Sensor Networks,” Computer Comm., special
issue on algorithmic and theoretical aspects of wireless ad hoc and
sensor networks, 2008.

[5] J. Benaloh, “Dense Probabilistic Encryption,” Proc. Workshop
Selected Areas of Cryptography (SAC ’94), pp. 120-128, 1994.

[6] E.F. Brickell and Y. Yacobi, “On Privacy Homomorphisms,” Proc.
Ann. Int’l Conf. Theory and Applications of Cryptographic Techniques
(EUROCRYPT ’88), vol. 304, pp. 117-125, 1988.

[7] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient Aggrega-
tion of Encrypted Data in Wireless Sensor Networks,” Proc. Second
Ann. Int’l Conf. Mobile and Ubiquitous Systems: Networking and
Services (Mobiquitous ’05), July 2005.

[8] C. Castelluccia, Cryptology ePrint Archive, AIE, Report 2006/416,
http://eprint.iacr.org/, 2006.

[9] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring
sEnsor Networks Topologies,” IEEE Trans. Mobile Computing,
vol. 3, no. 3, pp. 272-285, July-Sept. 2004.

[10] D. Dolev and A.C. Yao, “On the Security of Public-Key Protocols,”
IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198-208, 1983.

[11] J. Domingo-Ferrer, “A Provably Secure Additive and Multi-
plicative Privacy Homomorphism,” Proc. Fifth Information Security
Conf. (ISC ’02), pp. 471-483, 2002.

[12] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” Proc. Ann. Int’l Cryptology Conf.
(CRYPTO ’85), vol. 31, no. 4, pp. 469-472, July 1985.

[13] L. Eschenauer and V.D. Gligor, “A Key-Management Scheme for
Distributed Sensor Networks,” Proc. ACM Conf. Computer and
Comm. Security (CCS ’02), Nov. 2002.

[14] S. Galbraith, “Elliptic Curve Paillier Schemes,” J. Cryptology,
vol. 15, pp. 129-138, 2002.

[15] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “TinyPEDS: Tiny
Persistent Encrypted Data Storage in Asynchronous Wireless
Sensor Networks,” Elsevier Ad Hoc J., vol. 5, no. 7, pp. 1073-1089,
Sept. 2007.

[16] J. Girao, D. Westhoff, and M. Schneider, “CDA: Concealed Data
Aggregation for Reverse Multicast Traffic in Wireless Sensor
Networks,” Proc. IEEE Int’l Conf. Comm. (ICC ’05), May 2005.

PETER ET AL.: A SURVEY ON THE ENCRYPTION OF CONVERGECAST TRAFFIC WITH IN-NETWORK PROCESSING 33

Fig. 4. Recommendations on the usage of additive homomorphic

schemes in WSNs.

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

[17] W.B. Heinzelmann, A.P. Chandrakasan, and H. Balakrishnan,
“An Application-Specific Protocol Architecture for Wireless
Microsensor Networks,” IEEE Trans. Wireless Comm., vol. 1,
no. 4, pp. 660-670, Oct. 2002.

[18] J. Girao, D. Westhoff, and M. Schneider, “CDA: Concealed Data
Aggregation in Wireless Sensor Networks,” Proc. ACM Work-
shop Wireless Security (WiSe ’04), in conjunction with ACM
MobiCom ’04, Oct. 2004.

[19] K. Koyama, U.M. Maurer, T. Okamoto, and S.A. Vanstone,
“New Public-Key Schemes Based on Elliptic Curves over the
Ring Zn,” Proc. Ann. Int’l Cryptology Conf. (CRYPTO ’91),
pp. 252-266, 1991.

[20] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[21] E. Mykletun, J. Girao, and D. Westhoff, “Public Key Based
Cryptoschemes for Data Concealment in Wireless Sensor Net-
works,” Proc. IEEE Int’l Conf. Comm. (ICC), 2006.

[22] D. Naccache and J. Stern, “A New Public Key Cryptosystem Based
on Higher Residues,” Proc. ACM Conf. Computer and Comm.
Security (CCS ’98), pp. 59-66, 1998.

[23] M. Oenen and R. Molva, “Secure Data Aggregation with Multiple
Encryption,” Proc. European Workshop Wireless Sensor Networks
(EWSN ’07), Jan. 2007.

[24] P. Paillier, “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,” Proc. Ann. Int’l Conf. Theory and
Applications of Cryptographic Techniques (EUROCRYPT ’99),
pp. 223-238, 1999.

[25] P. Paillier, “Trapdooring Discrete Logarithms on Elliptic
Curves over Rings,” Proc. Ann. Int’l Conf. Theory and Applica-
tion of Cryptology and Information Security (ASIACRYPT ’00),
pp. 573-584, 2000.

[26] S. Peter, P. Langendörfer, and K. Piotrowski, “On Concealed Data
Aggregation for Wireless Sensor Networks,” Proc. Fourth IEEE
Consumer Comm. and Networking Conf. (CCNC), 2007.

[27] S. Peter, P. Langendörfer, and K. Piotrowski, “Public Key
Cryptography Empowered Smart Dust Is Affordable,” Int’l J.
Sensor Networks, special issue on energy-efficient algorithm and
protocol design in sensor networks, vol. 4, nos. 1/2, 2008.

[28] R.L. Rivest, L. Adleman, and M.L. Dertouzous, “On Data Banks
and Privacy Homomorphisms,” Foundations of Secure Computation.
Academic Press, pp. 169-179, 1978.

[29] T. Okamoto and S. Uchiyama, “A New Public-Key Cryptosystem
as Secure as Factoring,” Proc. Ann. Int’l Conf. Theory and
Applications of Cryptographic Techniques (EUROCRYPT ’98),
pp. 308-318, 1998.

[30] R.L. Rivest, L. Adleman, and M.L. Dertouzos, “On Data Banks and
Privacy Homomorphisms,” Foundations of Secure Computation,
pp. 169-179, Academia Press, 1978.

[31] C. Wagner, “Cryptoanalysis of an Algebraic Privacy Homo-
morphism,” Proc. Sixth Information Security Conf. (ISC ’03),
Oct. 2003.

[32] D. Westhoff, J. Girao, and M. Acharya, “Concealed Data
Aggregation for Reverse Multicast Traffic in Wireless Sensor
Networks: Encryption, Key Pre-Distribution and Routing,” IEEE
Trans. Mobile Computing, vol. 5, no. 10, pp. 1417-1431, Oct. 2006.

Steffen Peter received the diploma in computer
science from the Brandenburg University of
Technology (BTU), Cottbus, Germany, in 2006.
After some preliminary work as student, he
joined IHP, Frankfurt (Oder), Germany, in
2006. He worked in the Wireless Internet
Project, developing a hardware TCP accelera-
tor. In his diploma thesis, he was involved in the
development of hardware cryptography accel-
erators. In this area, he has filed three patents

and has authored two technical papers. He is currently a member of the
mobile middleware group, where he is working in the research of
solutions for security issues of wireless sensor networks. His research
interests include security and privacy in mobile environments with
emphasis on efficient hardware implementation for this purpose.

Dirk Westhoff received the PhD degree in
computer science from the Distance University
of Hagen in 2000. In 2007, he received a
postdoctoral lecture qualification entitled “Secur-
ity and Dependability Solutions for 4G Wireless
Access Networks” from the Distance University
of Hagen. Since 2001, he has been with the R&D
Network Laboratories, NEC Europe, Heidelberg,
Germany, where he is currently a chief research-
er. Recently, he has been strongly involved in the

definition and launching phases of the European projects UbiSec&Sens,
SENSEI, and WSAN4CIP. He is cofounder of the European Workshop
on Security in Ad Hoc and Sensor Networks (ESAS) series published by
Springer. He has more than 50 peer-reviewed publications in network
security and distributed system’s security and is the holder of six patents.
He has been involved in the TPC of several ACM and IEEE workshops
and conferences. He is a member of the steering committee of the ACM
Conference on Wireless Network Security (WiSec). His research
interests include wireless security, ad hoc and sensor network security,
and many other security and privacy aspects of distributed mobile
communication. He is a member of the IEEE.

Claude Castelluccia received the engineering
diploma in computer science from the Univer-
sité de Technologie de Compiègne (UTC),
Compiègne, France, the MSc degree in elec-
trical engineering from the Florida Atlantic
University, Boca Raton, Florida, in 1992, and
the PhD degree from the Institut National de
Recherche en Informatique et en Automatique
(INRIA) in 1996. He was a postdoctoral
researcher in the wireless research group of

Stanford University in 1997. He has been a researcher at INRIA since
1997, where he is leading a research group on network security. He
was a senior researcher at the University of California, Irvine from
2003 to 2005. He was appointed as an INRIA senior researcher
(directeur de recherche) in 2005. He has published more than 100
scientific papers and several Internet drafts and RFCs. He also served
on the technical program committee of several conferences and
workshops in this field. He was a steering committee member of the
European Workshop on Security and Privacy in Ad hoc and Sensor
Networks (ESAS) and is currently a steering committee member of
ACM Conference on Wireless Security (WiSec).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Authorized licensed use limited to: IHP GmbH. Downloaded on February 22,2010 at 08:00:35 EST from IEEE Xplore. Restrictions apply.

