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Abstract—Wireless sensor and actor networks based
on Bluetooth technology require an algorithm to build
up and maintain a Bluetooth scatternet. Although much
research has been done, actual deployment is rare because
a self-organizing and self-healing procedure suitable for
actual Bluetooth nodes has not yet been developed. We
present the SFX algorithm to build a scatternet tree
with the required properties. The method was verified
by simulations for up to 400 nodes and by field tests.
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I. INTRODUCTION

Since its introduction in the 1990’s, Bluetooth has
become a widespread technology for wireless personal
area networks. Typical applications replace wired links
over short distances, e.g., between a mobile phone and a
headset, or a PC and keyboard. A completely different
type of application connects an unlimited number of
nodes into a ”scatternet”. This is built on the basic unit
of Bluetooth communication, a ”piconet” of maximally
eight nodes. A scatternet is a collection of piconets, with
some nodes member of two or more piconets, arranged
in such a way that any two nodes can communicate via
multiple hops over intermediate nodes.

Theoretically a simple concept, a scatternet is surpris-
ingly tricky to build up. Numerous applications in in-
dustry, environmental monitoring, and sensor networks
would benefit from a robust algorithm to set up and
maintain a scatternet. The task is demanding: a large
number of independent nodes must self-organize into
a coherent network with 100% reliability, operating
within the somewhat quirky features of the Bluetooth
system. Specific issues are:

• Nodes must discover other nodes in the neigh-
borhood, using the Bluetooth procedure ”inquiry”
which is is slow and interrupts normal data traffic.

• The Bluetooth piconet structure must be obeyed (a
single master, communication only between master
and slaves). Different solutions can be found, none
of which are especially straightforward.

• A self-healing property is required. As communi-
cation links are temporarily blocked, nodes fail, or
new nodes enter, the network must reconfigure to
maintain scatternet integrity.

• Depending on the application, trade-offs exist be-
tween power consumption, latency, network ro-
bustness, and throughput.

In this paper, we consider large networks of up
to several thousand nodes. This leads to additional
requirement:

• It is not feasible to collect information about the
nodes centrally and to construct the network based
on this knowledge.

• In general nodes will not be within radio range of
each other.

A final set of requirements arises when commercially
available Bluetooth devices are used. These generally
have additional restrictions compared to the standard.
Specifically, we consider the BlueCore implementation
from CSR [1].

• The standard allows a Bluetooth device to be a
member of any number of piconets (albeit master
in only one). In practice, a device can be in
maximally two piconets.

• The standard allows each master to control up
to seven slaves. In practice, performance in a
sactternet degrades strongly for more than 3 to 4
slaves.

In this paper, we present the SFX algorithm for
constructing and maintaining a scatternet which satisfies
all the listed requirements. It was developed to network
the collectors in large solar energy farms (leading to
the name SFX). This application is characterized by
an unlimited power supply, targets for the data traffic,
and latency requirements. However, the final algorithm
is of general applicability to large scatternets, possibly
modified to some extent. Our approach is based on
the published SHAPER algorithms, but adds crucial
elements required for use in real-life environments. We
discuss relevant aspects of Bluetooth and previous work
in Section II. Section III presents the SFX algorithm
and Section IV briefly discusses the implementation and
evaluation. Section V gives the conclusions.



II. RELATED WORK

A. Summary of relevant Bluetooth features

Bluetooth is a short-range wireless system based
on frequency hopping, characterized by low cost and
robustness. Any Bluetooth connection lies within a
piconet of up to eight nodes. The piconet is coordinated
by one node (the master) whereby data can only be
transfered between it and the slaves. A scatternet is a
collection of piconets, with ”bridge” nodes lying in two
piconets. The bridge node can be master in one piconet
and slave in the other, or it can be slave in both. For a
given link, either node can request a role switch, which
may or may not be granted by the peer node.

Every Bluetooth device has a unique 6-byte device
address, generally denoted by BD_ADDR. A Bluetooth
application desiring to control connection setup, ter-
mination, and master/slave roles can be built on the
event-driven host controller interface (HCI), which is
described in detail in the 1700 page Bluetooth specifi-
cation [2].

An important issue is device discovery, handled by
the ”inquiry” and ”inquiry scan” modes. One device
is in inquiry, repeatedly sending a special inquiry data
packet and waiting for a response, while the second
device is in inquiry scan, listening for the inquiry packet
and responding. Inquiry typically is done for some
seconds or until enough responses have been collected.
Inquiry scan is done periodically and is invisible to the
application; default is a scan of 11.25 ms every 2.56
s. The inquiry procedure is hopped over 32 dedicated
frequencies, puzzlingly split into two trains of 16.
Even in error-free transmission conditions, the time for
discovery can be up to 10.24 seconds [2] for the default
configuration. A number of papers have studied the
discovery process (see for example [3]). In practice,
a central ingredient is to use an ”interleaved” inquiry
scan. The scan then takes 20.5 ms and discovery is
highly probable if the the inquiry and inquiry scan on
the two devices overlap.

By default, the result of discovery is essentially the
BD_ADDR of the remote node. The SFX algorithm
relies heavily on the fact that, optionally, a 240-byte
payload can be returned in an ”extended inquiry re-
sponse” (EIR). By this means nodes can inform others
of their status in their tree before a connection is
established.

A node in inquiry does not participate in normal data
transfer; data packets are queued until the inquiry mode
is ended. This can lead to large latencies in multi-hop
networks if nodes go into inquiry frequently.

B. Previous work on scatternet formation

Scatternet formation has been intensely studied and
good surveys of the results exist [4]. Overall, most
algorithms can be classified as mesh-based or tree-
based (although star and ring topologies have been
considered). A mesh allows multiple routes between
nodes, while a tree is loop-free with a only single
route for each node pair. Advantages of a mesh are
that the inherent redundancy handles disrupted links,
while a tree must be repaired. Also, load balancing or
latency reduction can be done by appropriate routing.
On the other hand, a mesh topology requires effort
and overhead for routing and inter-piconet scheduling.
Examples for mesh-building algorithms can be found
in [5] and [6].

Since SFX is a tree-building algorithm, we focus on
related previous work. A variety of approaches have
been proposed, such as TSF [7], Bluetrees [8], and
SHAPER [9]. The topic here is to find an algorithm for
large systems which can be implemented with existing
Bluetooth hardware.

One issue is decentralization. For example, the BTCP
(Bluetooth Topology Configuration Protocol) [10] is a
centralized approach in which a coordinator determines
optimal piconets and sends lists of children to the
masters. Indeed, if the coordinator has all required
information this leads to an optimal topology. However,
this approach is not feasible for large systems due to
bad scalability and overhead for collecting/distributing
information. An algorithm is required which runs inde-
pendently on all nodes in parallel.

A second issue is node-to-node visibility. A simple
and effective way to build a tree is the TSF algorithm
[7]. Trees merge via their roots only, with one becoming
root of the merged tree. While this is definitely simpler
than SFX, it assumes that all nodes are within commu-
nication range of each other. For a large systems, this
cannot be assumed.

A more realistic tree-building approach is SHAPER
[9]. This is a distributed self-healing algorithm pro-
ducing multi-hop Bluetooth scatternet trees, compatible
with a limited communication range. This algorithm
is the basis for the work in this paper. However, to
the best of our knowledge none of the approaches
has been applied in practice for large networks. The
evaluation typically focuses on simulations under ideal
conditions. making impractical assumptions such as
time synchronization, visibility of all nodes, or the
neglect of the consideration of concurrency. In SFX, the
inclusion of realistic conditions have lead to a coherent
and verified solution.



III. TREE FORMATION AND REPAIR

The purpose of the SFX algorithm is to build up
and maintain a tree of Bluetooth nodes by defining a
suitable piconet structure. The term ”tree” includes the
master-slave relation along each link. A node may be
member of up to two piconets. An ”intermediate” node
participates in two piconets: it is slave in the piconet
coordinated by the master above it in the hierarchy, and
it is master of the piconet containing its own children.
There are also ”leaf” nodes (without a master role) as
well as a single ”root” node (master role only). The
master/slave relation will be represented by an arrow
from master to slave (see Fig. 1).

We seek a decentralized algorithm which can be
iterated until all nodes have merged. In the general case,
two intermediate nodes have decided to merge their
trees by creating a connection. This cannot be done
directly: whichever node is slave in the new connection
would become member of three piconets. However, we
cannot avoid this case: due to the limited radio range,
this could be the only way in which the trees can merge.
Following SHAPER, we reconfigure one of the trees
by means of master-slave role switches until the root
has moved to the node intending to create the new
connection. This node now lies in only one piconet
(which it manages) and can create the new connection,
as long as becomes slave. The whole procedure can
be continued indefinitely, since each merge results in a
single tree with an identical type of structure.

Although we adopt the central idea of SHAPER,
a number of other features of that algorithm are not
practical and lead to unnecessary complexity. Further-
more, procedures must be added for effective locking,
to ensure that a loop-free geometry results, to optimize
the topology, and to obtain rapid tree self-healing for
disrupted links. We discuss these questions below.

A. Basic tree-merging procedure

On each node, we characterize its role by the ”tree
identifier” (the Bluetooth device address of the root
node as in SHAPER) and its depth in the tree. In
addition, each node maintains a list of local connections
and its master/slave role in each.

The algorithm starts with node discovery, by means
of the inquiry state entered at random intervals. The
node accumulated state information from neighbor
nodes by collecting extended inquiry results (EIRs).
A node returns its current tree identifier, the depth in
its tree, the number of connections, and the number
of descendants. The active node then analyzes the
responses and decides whether to merge trees (described
next) or to reduce depth (described later). The exact

Figure 1. Top: two trees before node A initiates merging with B.
After the active tree reconfigures to make A root, node A sends a
connection request to B. Bottom: the merged tree where A is slave
in the new connection and T is root of the merged tree.

preconditions for a merge are considered later; at the
minimum, the two nodes must lie in different trees.

An important distinction to SHAPER is that the
SFX merging procedure is highly asymmetrical. Con-
sidering Fig. 1, node A has decided to merge with
node B, indicated by the dashed line. At this stage,
B is completely passive at the application level (the
EIR was sent automatically by the Bluetooth system)
and has no knowledge of A’s intentions. The ”active”
left-hand tree must now reconfigure to make A the
root. Node A sends a ”reconfigure request” message
upstream to its master C. This node passes the message
on until the root S is reached. The root node (even
when moving) continually maintains a lock to ensure
that only one merge operation is active at a time. If
the reconfiguration is refused, a ”reconfigure reject”
message is returned. Node A then cancels the merge
attempt.

Alternatively, if node S grants the reconfiguration,
it sends a ”reconfigure OK” message to C. Node C
initiates a role switch with S. When the switch is
complete, node S has changed to intermediate node.
Node C is temporarily root, sends a reconfigure OK
message downstream to A, waits for the role switch
to be initiated by A, and is then again an intermediate
node. Node A has now become root and initiates the
connection to B. The connection will be set up with an
immediate role switch: node B will becomes master, A
will be slave.

At this point, node B for the first time notices the
merge attempt as the connection request arrives. It
rejects it if it cannot accept more children (say, some
other new child arrived while tree A was reconfiguring).



Otherwise, it accepts and sends its current tree id and
depth over the new connection. Node A increments the
depth, sets it own tree id/depth, sends a tree id message
to all children, and unlocks. The merge procedure is
now complete. However, the tree id message might
still propagate some time down the subtree. Each node
increments the depth, sets its own tree id/depth, and
sends the message on to its children.

Noteworthy aspects are:
• The merge procedure is asymmetrical. The active

tree containing A has locked, done a lengthy
reconfigure operation, actively initiated the con-
nection, and distributed the new tree identifier to
its sub-tree. Node B has merely responded to the
connection request and sent its tree id over the
new link. No locks were set and no information
was distributed. This is a major advantage for
parallel tree-building in all parts of the system.
Any number of other trees can merge with tree B
at the same time. Also, we avoid the badly-scaling
distribution of information in the ever larger target
tree.

• There is only a single case to be handled, as
opposed to four separate merge procedures in
SHAPER. This makes an implementation of our
algorithm easier.

In case node A finds its connection request refused by
B, tree A has reconfigured in vain and the tree id/depth
information is not consistent. Node A performs a ”grab”
to inform all descendants that is is now root. It sends
a tree id message to its children which then propagates
as described. No attempt is made to determine the time
when all descendants have received the message and set
their tree id/depth correctly. This is discussed further in
the context of tree self-healing.

B. Locking and loop avoidance

Additional measures are still needed to prevent loop
formation. Locking ensures that maximally one merge
attempt is done per tree, but parallel merges from
tree A to tree B and from tree B to tree A can
occur. A conceivable solution is to implement some
analogous locking procedure on tree B. This would lead
to a severely increased complexity with badly-scaling
delays and race conditions. Worst of all, it sacrifices
the property that many trees can merge into tree B
simultaneously.

We have therefore adopted a known device for such
issues: a tree only merges if its own tree id can be
reduced. This leads to a robust procedure for large
systems, allowing distributed merges in parallel. For
example, it can happen that some other node in tree
B has decided to merge with a third tree X while tree

A was reconfiguring. This only means that the tree
id finally presented to A is even lower than expected.
Depending on the timing, tree A might receive several
tree id messages, each lowering the tree id further. In
every case, a valid loop-free tree will result.

Clearly, the final root node is preordained, namely
the one with the lowest Bluetooth device address. This
node will never actively merge, and all other nodes will
join its tree eventually. This feature is used to choose
a specific node as root of the final tree. This node (and
no other) sets a flag which is part of the tree identifier
(together with the aforementioned Bluetooth device
address). The comparison between two tree identifiers
is defined so that a flagged tree id always comes out
lower. In our application, this node is the gateway by
which collected data is transferred to the Internet. In
the next subsection, the tree is optimized to reduce the
depth relative to this specific node.

Whatever node happens to be root, reconfigure re-
quests walk upstream until they hit this node, which
then returns the accept or reject decision. There is an
obvious consistency problem here. After every merge,
new tree id/depth information is flooded downward, but
a node can never be sure that its current tree id/depth
information is up to date. The issue is important: a
node which bases its decision to merge on stale data
might set up a parallel connection to a remote tree and
create a loop. Some kind of acknowledgment scheme to
verify consistency over the whole tree is not feasible in
practice. The best solution is to include the current tree
id of the originating node in each reconfigure request.
The node which detects a discrepancy between its own
tree id and that in the request immediately sends back a
reject message to cancel the merge attempt. This device
ensures that nodes only perform a merge when their tree
id is correct.

C. Tree optimization
Depending on the application, the tree could be con-

structed to balance the load on the nodes, to conserve
energy, or to maximize the throughput etc. Here it is
of interest to minimize the number of hops between
the root (gateway) node and any other node. A simple
optimization strategy was used as follows. When a node
has joined the target tree (i.e., with flagged tree id) it
begins to optimize to reduce its depth. The list of EIRs
obtained during inquiry is inspected to find a peer node
which is at least two steps higher in the tree and can
still accommodate another child. In that case, the node
disconnects from its current master and builds a new
connection to the peer node. Simulations have shown
that this simple technique effectively reorganizes the
tree to a suitable topology. At that point, no node can
further reduce its depth by local optimization.



Figure 2. Example for loop formation after grab.

The peer node might reject the incoming connec-
tion request, e.g., because it has reached the maximal
number of children. In that case, the already-merged
tree has been split and must be re-merged. The node
attempting to reduce its depth is now root of the split-off
tree and performs a grab as described above. After that,
the procedure is handled by the self-healing behavior,
described next.

D. Tree self-healing

When communication over a Bluetooth link breaks
down, both nodes are informed by the HCI. The node
which has lost its master has become root of the split-
off subtree. It performs a grab to inform its descendants
of the new tree id. From that moment, all nodes in
the subtree again initiate tree merging when a suitable
peer is found in inquiry. This is the essence of the
self-healing behavior: all nodes periodically probe their
environment by means of inquiry and the collection of
EIRs. In a stable system, each inquiry phase leads to
the result that no action must be taken. As soon as the
EIRs show the necessity to merge or reduce depth, these
procedures are triggered.

Although tree-healing is in principle built into the
algorithm, a specific problem can arise. By construction,
whenever the tree splits and a grab is done, the tree id in
the split-off subtree increases. Therefore, the automatic
robustness which was present during tree building is
broken. Consequently loops can arise in some cases and
must be handled.

For example, in Fig. 2 node A has lost its master by a
broken link and has grabbed the split-off tree by sending
a tree id message to its child B. Because B is in inquiry,
the message is delayed for some seconds. During this
period, A goes into inquiry itself and receives stale
information from C, since this node still believes itself
to be in the tree with lower id. Node A consequently
merges with node C, thereby creating a loop. These
cases occur in practice but no really clean solution could
be found. As simple but effective fix, node A detects
the loop when the tree id message it has sent to B
loops back. The node then disconnects all links to its
neighbors and proceeds with tree merging after a pause
of a few seconds.

IV. IMPLEMENTATION AND EVALUATION

Figure 3 illustrates the event-driven state machine for
the active node A of Fig. 1. As mentioned, peer node B
is mainly passive, responding to the connection request
and returning its tree id/depth over the new connection.

In NORMAL, the node handles connection requests
and data traffic, sends inquiry responses, and takes part
in reconfiguration operations by other nodes in the tree.

After a random period, the node goes into INQUIRY
and builds up a list of neighbors. This list is analyzed
and can initiate one of three procedures:

• If A wants to merge trees and is root, it does a
connection request and goes to CONNECTION.
When the connection is established and the new
tree id was received, A distributes the tree id to its
descendants and goes to NORMAL.

• If A wants to merge trees and is non-root, it
sends a reconfigure request upstream and goes to
REQUEST CONFIGURE. If the reconfiguration
is granted, A does a connection request and goes
to CONNECT as in the previous case. Otherwise
the merge attempt is canceled.

• If A lies in the target tree and can reduce its depth
by becoming child of the peer node, it disconnects
from its master in DISCONNECT, then does a
connection request and goes to CONNECT as
above.

If none of these procedures is appropriate, A returns
from INQUIRY to NORMAL: the tree is stable.

The algorithm was implemented over the HCI inter-
face. A surprise during simulation was the unexpected
complexity of scatternet-building when all nodes play
an independent and active role. The system is highly
dynamic; when a node merges with another, it is prob-
able this node is in some other state when the procedure
is completed. Repeated cycles of implementation, sim-
ulation, and analysis led to the set of rules presented
in the previous sections. Verification and development

Figure 3. Implemented state machine for the merging node.



was done for several hundred different tree-building
simulations for various geometries and system sizes up
to 400 nodes. The final algorithm delivers a valid and
optimized tree in every case, requiring approximately
180 second for 400 nodes. The simulation environment
is an in-house development which allows the software
to be run directly over the Linux BlueZ stack. Several
hundred test runs in a system with 30 Bluetooth nodes
delivered a correct tree each time in the expected timer
frame. Currently, the algorithm is performing equally
in a solar power station with 30 nodes, with a new test
done each morning as the sun rises. At the time of writ-
ing, it is under deployment in a newly-built larger plant.
A thorough presentation of the simulations and real-life
measurements is deferred to a future publication.

V. CONCLUSION

This work was driven by a real-life industry appli-
cation, which dictated the use of Bluetooth technology
as well as the ultimate scaling to thousands of nodes.
A survey of the state-of-the-art for scatternets seemed
to indicate the SHAPER algorithm as the most promis-
ing approach. Unfortunately, it emerged that SHAPER
cannot be implemented, even though the basic idea
is sound. SHAPER merges trees by forming a link,
exchanging data, then deciding how to reconfigure.
This contradicts the rules for e.g. the widespread CSI
Bluetooth devices [1] restricting nodes to membership
in two piconets. Our innovative solution is to use
the extended inquiry response (EIR) to pass critical
information between nodes in a broadcast fashion, by-
passing the communication links. This allows decisions
about reconfigure/merge operations to be made before
the procedure starts. SHAPER postulates four different
merge procedures. This complexity is difficult to realize
in the event-driven Bluetooth HCI and is unnecessary:
our analysis identified a unified asymmetrical procedure
with no need to distinguish between ”free”, ”root”,
and ”non-root” nodes. SHAPER correctly identifies the
need for a locking mechanism to avoid loop formation.
Their suggested approach (a lock maintained by the
root) was also the basis for our algorithm. However,
research showed numerous problems with race condi-
tions, in particular during the distribution of data in
a tree. Our solutions were presented in Section IIIB.
Finally, SHAPER requires the maintenance of the tree
cardinality over all nodes. Thus, whenever two trees
merge, this number must be calculated and distributed;
when a node leaves a tree, the same must be done. No
solution was given for the associated race conditions
and scale issues. To defuse this and related issues,
our algorithm introduces a central requirement: the
active role in the merge procedure is only taken if the

node can lower its tree id by merging. This yields a
highly robust mechanism, by which independent merges
can take place at different positions with no risk of
loop formation. Finally, we present a straightforward
but successful method for reducing the tree depth. In
parallel to tree merges, nodes disconnect and reconnect
within their tree to reduce their depth. After a few steps,
each node finds a stable position and remains there with
no sign of oscillatory behavior.

We believe our work presents the first successful
implementation of Bluetooth scatternets in realistic in-
dustrial environments. It opens the door to a multitude
of similar applications.
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