
tinyDSM: A Highly Reliable Cooperative Data Storage For Wireless Sensor
Networks

Krzysztof Piotrowski, Peter Langendoerfer and Steffen Peter
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany,
{piotrowski|langendoerfer|peter}@ihp-microelectronics.com

ABSTRACT

The advantage of a Wireless Sensor Network (WSN)
compared to a centric approach is the distribution of
sensing suites. However, in order for such a system of
distributed resources to work in a reliable and effective
way a smart cooperation between nodes is needed. In this
paper we propose a middleware approach for a highly
reliable data storage that helps to assure data availability
despite the well known WSN resource problems and
disappearing or inactive nodes by providing a reasonable
data redundancy in the system. Such a solution helps to
ease the design and optimization of the data exchange
between nodes as well. Our solution is configurable
in order to satisfy the needs of the application on top
regarding performance/requirements trade-off. The options
specify the quantity and quality of the data replication.
Additional features like event mechanism that monitors
the data and the possibility to issue database like queries
increase the applicability of our middleware. In this paper
we focus on the evaluation of its capabilities regarding
reliability, the consistency of replicates and the costs
of the data management. The simulation results for a
reasonable set-up show that the CPU load caused by the
data replication is low (below 3 percent) and the average
inconsistency time is as small as about 0,06 seconds for
a single hop and about 0,15 seconds for a two hops
replication area. There is still room for improvements, but
a clear definition of problems helps to find ways to cope
with them in order to achieve the chosen goals.

KEYWORDS: Cooperative Computing, Wireless Sensor
Networks, Software Development, Distributed Shared
Memory, Distributed Data Storage.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are considered to be the
key enabling technology for a large variety of innovative
applications. The majority of the applications is using the
WSNs in a passive way, i.e., they are used to measure and
store data that is then requested whenever the application
needs it by sending queries into the WSN. An even simplier
scenario is where the measured data is directly forwarded
towards the sink. The driving force of our approach is
to put more intelligence or at least some decision taking
means into the WSN in a distributed manner in order to
make the network reactive and thus, more autonomous.
Since the autonomous decisions are based on the data, a
reliable and robust distributed data storage is necessary to
enable this functionality.

On the other hand, WSNs are exposed to harsh conditions,
suffer from scarce resource and are required to have
long lifetimes without requiring any maintenance. Ensuring
fast and reliable access to the data stored in a WSN
requires a redundant data storage. In order to assure data
availability in case of disappearing or sleeping nodes the
data redundancy by means of data replication is needed.
The questions about the required number of replicas, the
overhead caused by their distribution and the problem of
the replica consistency need to be faced.

Our solution, the middleware we called tinyDSM, provides
a reliable distributed data storage. It defines the shared
data pieces and allows defining the replication area in
terms of number of hops the data item is going to be
replicated within. The level of reliability is configurableas
well, providing means to determine the consistency level,
e.g., by specifying the percentage or number of positive
acknowledgements in order to provide a specified number
of fresh replicas after each or every n-th update operation.
Thus, our middleware provides configuration means for
quantitative and qualitative definition of the replication.

We simulated our approach for a network of 400 nodes.
One of the performance figures is the delay between the
change of the value on the source node and the last update

of a copy. We assume here that all copies where updated.
In order to avoid consistency problems caused by partial
update due to sleeping nodes or message collisions a
lifetime period for a copy may be specified to invalidate
it if it is not updated on time. The simulation results
show that the average inconsistency time is about 0,06
seconds for one hop and about 0,15 seconds for two hops
replication area. However, this values are mostly influenced
by the medium access delay added to reduce the collisions
of acknowledgements at the source node, thus, there is still
room for improvements.

Another feature of the middleware we want to verify in
this paper is its adaptability to the desired number of
copies. The simulations show as well that the adaptation
algorithms behave well, that the CPU load is low and the
communication overhead is acceptable.

The rest of this paper is structured as follows. Section 2
introduces shortly the goals we want to achieve with our
middleware. The following section presents the detailed
description of the proposed solution. Section 4 provides
the evaluation of our prototype implementation. The paper
concludes with a short outline on future research.

2. MOTIVATION

Before we specify our goals we need to think about the
application environment, the Wireless Sensor Network.
This environment can be classified as a loosely coupled
multiprocessor system, with a potentially great number
of nodes, each equipped with own memory, networking
means and a processing unit. However, in this system there
are several limitations that need to be kept in mind. The
nodes have constrained resources, i.e., their computation
power and the available amount of memory and energy are
quite limited. Due to code memory limitations it is hardly
possible to have all possible algorithms implemented and
available to freely change the behaviour according to the
situation. The network as a collection of nodes is constraint
as well, the communication between nodes happens at
low transmission speed and the link reliability is quite
poor causing transmission losses and delays in case of
retransmission. But then, the retransmissions cause extreme
costs regarding the energy consumption. The limited avail-
able energy causes a trade-off between the lifetime of the
desired system and the node activity ratio dependent on the
allowed amount of power to be consumed by the node. All
those constraints combined with the fact that the network is
not always static, since nodes may disappear or new nodes
may appear, causes the programming of WNS applications
to be a very challenging task.

In order to specify the application field, we made several
assumptions regarding the requirements and/or limitations

a system based on our middleware has to cope with. So,
first of all, we do not limit the size of the network. In
such a large network the access pattern shows that a data
item is usually locality bound, i.e., an unprocessed and
original information is usually relevant for nodes in a
certain locality only. We assume the network to be highly
dynamic, meaning that, on one hand, the nodes can be
added at will and, on the other hand, they can disappear
permanently because of lack of energy or temporarily
because of communication issues. Thus, the nodes can be
rather considered as temporary medium for the data than
a kind of solid infrastructure.

Our goal is to provide a reliable data storage middleware
for WSN that distributes the data items among the nodes
in the network assuring the availability and cooperative
access to the data in a given source node bound locality.
Additionally, the replicas of the original data needs to be
managed in order to provide a consistent global view on
each data item. This means, we need to provide mecha-
nisms that cope with the above mentioned problems while
providing data management functionality that is reliable
and consistent to the chosen extent. Since there is no
solution that fits all needs regarding the replication range
and density, we want to have the replication configurable
in terms of quantity and quality. Having that, we want to
investigate the relationship between those two factors and
their costs.

3. OUR SOLUTION

The basic idea of tinyDSM is to provide means that
allow sensor nodes to share their data in an application
dependent way. To ease the access to own data a sensor
node—the owner—broadcasts the data and some nodes in
its locality create local replicas of the data. By that any
of these sensor nodes is able to perform directly a read
operation on the local copy and is thus able, for example,
to answer queries about the stored data without forwarding
the query to the owner node. The choice if a node becomes
a replicator is generally random but is influenced by the
initial configuration regarding the replica number and/or
density. The changing of a value belonging to other node,
i.e., a write operation, is possible as well, however, it
requires the acceptance of the owner node and the actual
write is de facto done by the owner.

As already mentioned, an essential feature of data replica-
tion is that it assures the information to be available even
if some nodes are exhausted or in sleep mode. Figure 1
shows the idea of locality bound replication in a WSN (a)
and its advantage in case of an external query (b). The
replica holders are represented by light grey dots and the
owner is the black dot.

Figure 1. Data Replication (a) and an External Request (b)

The notion of locality is here specified as a kind of n-
to-n relationship that associates nodes to groups. In our
solution we focus on the definition of locality in terms
of communication range with a specified number of hops.
This coarse specification is controlled by the replication
range—the first of the quantity parameters. And since
the number of nodes in the replication range depends
on the density of the network, we define a sub-group
in that locality—the replicators. This is the target group
for storing the replicas of the data item in question.
The membership in this sub-group is based on a random
decision influenced by another quantity parameter—either
represented by the number of replicas or their density.
This parameter specifies the number of requested replicas
directly or by the percentage of nodes in the locality that
are requested to hold the copy. The random character of the
initial distribution decision provides an equal distribution
of the replicators in the locality. Additionally, the increase
of number of replicators is only possible in the acquisition
phase of the update, in which the receivers are provided
with the requested replication probability.

Current implementation assumes the replication decision to
be static, i.e., once a node decides to become a replicator
it is assumed to be one until it dies or is not reachable
any more from any reason. This is caused by the fact
that a replicator node holds the current value of the data
as well as its historical values and too frequent changes
in the list of replicated items would cause this list to be
long causing intensive RAM usage and the history data
would be fragmented. However, in an application that is
not interested in historical data dynamic replicator changes
could be an advantage, causing the distribution to be even
more random.

On the other hand, to define and control the quality of the
replication, our middleware allows several options to verify
the replication achievements against the requirements and
to adapt the behaviour according to the results. These op-
tions include several strategies for counting the replicas—
even after every update in very reliability demanding
applications. If the number of copies is too small then
the replication probability sent in the update message is
increased resulting in additional replicator acquisition. Of
course the verification increases the communication over-

head caused by the replication, introducing the trade-off
between the quality of replication and its costs. And since
the quality of replication indicates the level of reliability
the data storage provides, the quality parameters allow to
shape the middleware according to the needs and allowed
expenses.

The definition of data items is currently static and global,
i.e., each data item is predefined at compile time as a
variable of a specified type and the set of them is global
for all nodes that build up the application/network. This
helps to avoid data misinterpretation in the application,
e.g., if the nodes need to exchange data and use them, for
example, to change own state or to perform calculations.
So, imagine an example application, where the designer
defines the following set of variables:TEMPERATURE,
HUMIDITY and LIGHT, all of byte type. In that case
it is clear for all nodes what is stored in each variable.
Of course a definition of a variable that represents an
array or structure is possible. In case of a byte array
DATA[5], five byte variables will be defined and each of
them may be replicated separately or as a bundle. Same
applies for structures. Of course, multi-purpose variables
are possible as well, e.g., an integer variableINFO may
contain temperature or humidity or light measurements
depending on the current state of the global application.
The defined variables may be visualized on each node as
a continuous memory area divided according to the types
of the variables. And each node has its own instance of
each variable. The definition of the shared variable is as
follows.

DISTRIBUTEDtype vName[policy parameters]

As already mentioned an instance of a variable is bound to
the owner, and thus, to the locality. In order to distinguish
between the values from different owners an instance of a
variable is labelled with the identity of its owner or locality,
e.g., the address or coordinates of the owner node. Thus,
the termTEMPERATURE@node0defines the source of the
variable, i.e., its spatial address dimension. Additionally,
to distinguish the variables in the temporal dimension,
each occurrence of an instance (or simply a value) is
marked by a time stamp or version number. The options for
spatial and temporal addressing reflect the capabilities and
requirements of the application that uses our middleware.

In order to configure the specific parameters, and thus,
the behaviour of the system the application developer
specifies the values for the parameters for each variable.
The complete set of parameters specifies the policy for that
variable. The policy can be also chosen from a predefined
policy file, making the development easier. Additionally,
exchanging the policy file allows creating several versions

of an applications with different reliability requirements
from the same application code.

Our middleware provides additional features that increase
its applicability. Next paragraphs briefly describe them, but
these features are not evaluated in this paper.

Every node is able to write any shared data item and in
order to do it, the node sends the write request to the
owner. The owner performs a local write operation and
sends the update to all replicators again. This solution has
been chosen because of the spatial focus of the replication,
i.e., the write request may come from any node in the
network, even a very distant one, but since the replication
area is the vicinity of the owner, this is the best node to
initiate the update of the replicates. But maybe even more
important reason is to keep the right order of the write
operations. This choice may cause the owner to become a
bottleneck, but we claim that the complexity of the system
would suffer from extending the writing operation to allow
all copies to be writeable.

The event mechanism in tinyDSM monitors the chosen
variables. Basically, each event a shared data item as
well and its value is defined by a logic equation with
terms based on other shared data items. In case the logic
equation results in logic true, the middleware notifies the
application about that—it fires an event. Depending on the
functionality provided by the handler function it may be
treated as local or global notification. The local notification
may adjust some local parameter of the on-node part of
the application, e.g., the sampling rate of an environment
phenomenon. The second type of events handling leads to
sending a predefined message, e.g., to a sink. The definition
of an event is as follows.

EVENTeNameIF conditionTRIGGERhandler() [policy params]

If necessary for the application the middleware may pro-
vide support for database-like queries. The query man-
agement allows processing complex database-like queries
about current and historical data issued either by a node
within the network or from outside—by the user. This
feature is, however, bound to high processing costs.

The architecture of the tinyDSM middleware consists of
the following modules (see Figure 2):

• Application Logiccontrols the behaviour of the nodes
that build up the global application; it defines the sources
of data and behaviour in case of events.

• Event & Replication Logicis responsible for detecting
the events for the incoming data. It also takes the

Figure 2. The Architecture of the tinyDSM Middleware

decisions on the replication and storage of new data and
controls data locating on reading.

• Query Logic is responsible for interpreting incoming
messages (queries or requests) and building results into
answer messages. It allows the use of complex database-
like queries issued by the user and read or write requests
from other nodes.

• Policiesare a virtual module that controls the behaviour
of the system. Exchanging the policy file at compile time
allows to create several versions of the application that
fulfil different requirements using the same source code.

• Memory Managercontrols the physical data storage on
the node. Provides the logical data system in the physical
data storage and operations to on it.

• Communication Interfacecontrols the communication
with other nodes. It hides the mapping between different
kinds of messages and protocols.

• OS Adaptation Layeris a layer that allows running
the same base skeleton implementation on different
operating systems. It provides the drivers for the services
provided by the OS, as well as, means to translate the
application requests into tinyDSM native ones.

The tinyDSM skeleton is implemented in pure C program-
ming language and the OS adaptation layer currently sup-
ports the tinyOS operating system. In this implementation
we wanted to map the concept architecture as presented in
Figure 2 as close as possible, but for optimization reason
some modules were merged. Table 1 presents the memory
footprint of the selected tinyDSM modules.

Figure 3 shows the interfaces our middleware provides to
the application running on top of it, distinguishing between
the part of application that resides on each node and
the application as a whole, represented by the network
of nodes. The part of the application that resides on
the node can use theDATA and theEVENT interfaces.

Table 1. Memory Footprints for Selected tinyDSM Modules

TmoteSky
Software item RAM [kB] ROM [kB]

TinyDSMCore 0.3 5.4
MemoryManager 0.4 7.1

CommunicationInterface 0.3 0.2

MicaZ
Software item RAM [kB] ROM [kB]

TinyDSMCore 0.3 5.4
MemoryManager 0.25 9.7

CommunicationInterface 0.25 0.3

Figure 3. The Interfaces Provided by the Middleware

The DATA interface provides access to the shared data,
allowing reading and writing. Using theEVENT interface
the application is notified about occurrence of defined
situations.

For the global application theQUERY interface is pro-
vided. Using this interface one can use the distributed
shared memory to answer more complicated queries based
on its content.

Thus, from the application perspective the middleware
provides the following services.

• WRITING a shared data,
• READING a shared data,
• NOTIFICATION in case a defined state of the data is

reached,
• answering complex QUERIES based on the memory

content.

4. THE EVALUATION

We simulated our approach using both, the Avrora [9] sen-
sor network simulator/emulator and the tinyOS simulator
TOSSIM [12]. The simulation results achieved with the
Avrora simulator were in some cases erroneous, because
the radio modules of the nodes tend to block for very large
or dense networks. Thus, here we present the results for
TOSSIM simulation for three scenarios with the following

Table 2. Network Parameters Used in the Simulations
Network Replication Radio Requested

name range [hops] range replicas

Network 1 1 1 2
Network 2 1 2 6
Network 3 2 1 6

parameters. In any case the network was a 20 x 20 nodes
mesh, with constant distance between each column and
row. To diversify the density of the network we used either
the single or double radio range, meaning that the nodes
were able to reach the nodes one or two rows/columns
away, respectively. These two parameters describe the
network in its physical sense and they were combined
with the policy parameters as presented in Table 2. In all
scenarios we defined one variable of the type byte and each
node sets its instance every 5 seconds causing an update.
The number of replicas to reach was set depending on the
amount of nodes in the locality defined by the replication
range. The initial probability of replication was constantfor
all scenarios and was equal to 25%. The quality parameters
for the data storage was defined such that a sequence of ten
update operations without acknowledgements is followed
by a verification/acquisition phase that can be retried up
to five times in case of failure. As already mentioned,
the acquisition phase uses an adaptation mechanism that
causes new nodes to join the group of replicators. Thus, in
this case if the number of acknowledgements/replicas in the
last update operation was too low. The policy parameters
mentioned here are only a small share of the complete set.

We use the default Medium Access Control (MAC) mech-
anism used by the ActiveMessage in TinyOS. This causes
that in case of simultaneous acknowledgement transmis-
sions to one node they are not protected by any means
against the Hidden Terminal effect. Thus, to increase
the success rate we added a random delay before every
transmission. The presented results are for simulation runs
that were limited to 1800 seconds PC running time.

Figures 4, 5 and 6 present the observations of the repli-
cation process for our simulation scenarios. On each chart
the x-axis presents the sequence numbers of the update
operations and the y-axis the number of replicas or the
number of received acknowledgements. The number of
acknowledgements is here only counted until it reaches the
requested number of fresh replicas. The charts show the
process of distribution/replication of one randomly chosen
instance of the defined variable.

In the Network 1 scenario the requested number of replicas
is easily reached, and actually the number of replicas
in the network is two times bigger than requested and
every verification phase finishes after getting just the two
required acknowledgements. Except the initial period, there
are no acquisition phases. However, here we can see that

Figure 4. The Replication Process for a Chosen Node in the
Network 1 Simulation Scenario

the relatively high replication probability of 25% caused
the number of replicas to grow already at the beginning of
the simulation exceeding the requested number more than
double, probably wasting storage space.

In the Network 2 the density of nodes is increased com-
pared to Network 1, but still, the single hop replication
range causes this scenario to be straight forward as well.
The number of replicas in the system is exact at the
requested level for several update cycles. Then, just before
the first verification phase, probably because of an update
message collision, the number of fresh replicas drops. This
situation was detected in the verification phase and the
acquisition phase was triggered causing the increase of
replicas. After that adaptation this simulation does not
show any misbehaviour. The number of replicas in the
system is 50% larger than the requested one causing only
little overhead.

Figure 5. The Replication Process for a Chosen Node in the
Network 2 Simulation Scenario

The Network 3 is a scenario with multi-hop replication
range. Nevertheless, the single radio range reduces the
traffic problems and the simulation does not show any

Figure 6. The Replication Process for a Chosen Node in the
Network 3 Simulation Scenario

misbehaviour and the requirements are satisfied. But again,
there is a need to be careful with the replication probability.
If its value is to big, the number of replicas may grow
rapidly in case of a single verification failure. Here, the
number of requested replicas was again exceeded more
than twice because in the third verification phase the suc-
cess condition was not satisfied. In the multi-hop version
of the verification phase, the acknowledgements forwarded
by the nodes closer to the owner are aggregated, so their
number may exceed the requested number of replicas.

Figures 4, 5 and 6 show that the concept is feasible, but
there is still room for improvement. On one hand, starting
with higher value of the replication probability reduces
the number of verification/advertisement phases but may
cause the network to be filled with too many replicas
very quick. Anyway, smart changes of the replication
probability, especially if additionally depending on the
current distance to the owner node may help to make
the distribution of the replicas more equal. If the total
number of replicas is higher than the number of fresh
ones there may be a need for replica freshness mark that
automatically invalidates old replicas, either based on time
or on the knowledge that a new value of the variable
was already replicated. Additionally, reducing the network
traffic by specifying conditions that trigger an update either
on time or value change basis, helps avoiding collisions and
increases the chance that the updates reach the replicators.
An RTS-CTS like MAC protocol would be helpful here as
well.

Figures 4, 5 and 6 show the quantitative and qualitative
characteristics of the replication, but with a little bit more
the focus on the first factor. Figure 7, in contrast, focuses
on the quality. It shows the average and maximum delays
between the setting of the variable by the owner and the last
update of its replica. These values can be used to represent
the average and the worst case time where the view of

Figure 7. The Average and Maximum Delay of a Replica
Update

the replicas is inconsistent, meaning, there may be still
an update to come. The numbers here are increased by
the random delay added to diversify the sending of the
messages to avoid collisions.

Figure 8 shows the network traffic overhead—the average
and maximum number of sent messages per update. We
simulated the scenarios with the same settings regarding
the update and verification/advertisement ratio and it is
clear to see that the traffic grows exponentially with the
complexity of the network. Here the way to cope with that
is again to reduce the update rate by defining the trigger
conditions.

Figure 8. The Average and Maximum Number of Packets
Sent per Update

The most important information achieved from the simu-
lation done with the Avrora emulator was the CPU load.
We managed to get stable results for a network of 64
nodes (8 x 8 mesh) with single hop replication range and
both, single and double radio range, i.e., density parameters
similar to the Network 1 and Network 2. The difference,
compared to these setups, is that every update is replied
with an acknowledgement message. For the double radio

range the average CPU load is about 3 percent, but for the
radio range of one the CPU load goes down to 1 percent.
Here, the most of the load is caused by the processing
of incoming packets, and grows with the traffic and the
relative density of the network.

These results show that the underlying protocol layer and
a proper configuration of replication strategies via policies
are very important and influence the performance of the
system especially with respect to the generated network
overhead. Reducing the update rate reduces the network
overhead, but, on the other hand, reduces the coherency
level that can be achieved. The use of the acknowledge-
ments to indicate that the replication took place, causes
the most part of the network overhead, but, on the other
hand, it informs the data owner about the distribution of
the replicas, allows strategy adaptation and increases the
overall reliability of the proposed solution.

Our results show that our approach is feasible and can be
instantiated as a very efficient implementation.

5. THE CONCLUSIONS AND OUTLOOK

In this paper we evaluated the feasibility of our proposal
of a reliable shared data storage middleware for WSNs.
The solution we proposed combines the functionality of
passive data storage, known from approaches like tinyDB
[8], cougar [11] or tinyPEDS [6], enhanced by reliability
means with an active data monitoring using its event
detection mechanism. It defines groups of nodes simi-
lar to the concept presented by Hood [10] or Abstract
Regions [5]. There are several other approaches that go
in the direction of the distributed computation and data
storage domain [2], [3], [1] and [4]. A reliable shared data
storage with active data monitoring opens the possibility
for nodes to cooperate more actively or even autonomic
and independent from the central station injecting more
intelligence into the network. Additionally, the replication
of data with configuration capabilities helps to assure the
data availability in case of node failure while providing a
consistent view of the replicas. The configuration specifies
the quantity and quality of the replication in terms of
the area and consistency parameters. These parameters
are part of a policy file, that controls the behaviour of
the middleware. It provides development flexibility as
well, since the policy file can be exchanged, resulting in
another instance of the same application, but with different
requirements and parameters.

The simulation results we presented indicate that our
approach can be used in WSNs without significant negative
impact on the node and network lifetime.

In the future we will research the effects of additional
adaptation possibilities and improve the replication strate-

gies with respect to processing and networking effort. In
order to increase the efficiency of the middleware we want
to investigate the protocol layer related optimization and
parametrization possibilities. Additionally, we will inves-
tigate the impact of the transmission costs to the overall
cost of the external read and write requests together with a
multi-hop protocol. In addition we are planning to extend
the tinyDSM architecture with suitable security features
and use theUPDATE messages for time synchronisation
and location estimation.

REFERENCES

[1] L. Luo, T. F. Abdelzaher, T. He and J. A. Stankovic, “Envirosuite:
An environmentally immersive programming framework for sensor
networks,”Trans. on Embedded Computing Sys., Volume 5(3), 2006,
pp. 543–576.

[2] P. Costa, L. Mottola, A. L. Murphy and G. P. Picco, “Programming
Wireless Sensor Networks with the TeenyLIME Middleware,” Proc.
of the 8th ACM/IFIP/USENIX International Middleware Conference
(Middleware 2007), Newport Beach (CA, USA), November 26–30,
2007.

[3] T. F. Abdelzaher, B. M. Blum, Q. Cao, D. Evans, J. George,
S. George, T. He, L. Luo, S. H. Son, R. Stoleru, J. A. Stankovic
and A. Wood, “EnviroTrack: Towards an Environmental Computing
Paradigm for Distributed Sensor Networks,” Proc. of the 24th Inter-
national Conference on Distributed Computing Systems (ICDCS04),
IEEE CS Press, 2004, pp. 582–589.

[4] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
Wireless Sensor Networks Using Kairos,” Proc. of the International
Conference on Distributed Computing in Sensor Systems (DCOSS
05), LNCS 3560, Springer, 2005, pp. 126–140.

[5] M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions,” Proc. of the 1st Usenix/ACM Symposium on
Networked Systems Design and Implementation (NSDI 04), 2004,
pp. 29–42.

[6] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “Tinypeds: Tiny
persistent encrypted data storage in asynchronous wireless sensor
networks,”Ad Hoc Networks Journal, Volume 5(7), Sept. 2007, pp.
1073–1089.

[7] J. Hill, P. Levis, S. Madden, A. Woo, J. Polastre, C. Whitehouse,
R. Szewczyk, C. Sharp, D. Gay, M. Welsh, D. Culler, and E. Brewer,
TinyOS: http://www.tinyos.net, March 2009.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor net-
works,” ACM Trans. Database Syst., Volume 30(1), 2005, pp. 122–
173.

[9] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor
network simulation with precise timing,” Proc. of the 4th international
symposium on Information processing in sensor networks (IPSN05),
Piscataway, NJ, USA, 2005, page 67.

[10] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood:a
neighborhood abstraction for sensor networks,” Proc. of the 2nd in-
ternational conference on Mobile systems, applications, and services
(MobiSys 04), New York, NY, USA, 2004, pp. 99–110.

[11] Y. Yao and J. E. Gehrke, “The cougar approach to in-network query
processing in sensor networks,”ACM SIGMOD Record, Volume
31(2), Sept. 2002, pp. 9–18.

[12] P. Lewis and N. Lee and M. Welsh, and D. Culler, “TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS Applications,”
Proc. of the First ACM Conference on Embedded Networked Sensor
Systems (SenSys 03), 2003, pp. 126–137.

