
Flexible Hardware Reduction for Elliptic Curve Cryptography in GF(2m)

Steffen Peter, Peter Langendörfer, and Krzysztof Piotrowski
IHP GmbH, Frankfurt(Oder), Germany

{peter,langendoerfer,piotrowski}@ihp-microelectronics.com

Abstract

In this paper we discuss two ways to provide flexi-
ble hardware support for the reduction step in Elliptic
Curve Cryptography in binary fields (GF(2m)). In our first
approach we are using several dedicated reduction units
within a single multiplier. Our measurement results show
that this simple approach leads to an additional area con-
sumption of less than 10% compared to a dedicated design
without performance penalties. In our second approach
any elliptic curve cryptography up to a predefined maximal
length can be supported. Here we take advantage of the fea-
tures of commonly used reduction polynomials. Our results
show a significant area penalty compared to dedicated de-
signs. However, we achieve flexibility and the performance
is still significantly better than those of known ECC hard-
ware accelerator approaches with similar flexibility or even
software implementations.

1 Introduction

Embedded devices are becoming integral part of safety
critical and long living systems, e.g. as part of monitoring
applications for buildings, cars etc. This automatically im-
plies that strong security means have to be applied in order
to ensure data integrity and authenticity. But the battery
power of embedded devices is not sufficient to run appli-
cations for several decades, especially not if heavy weight
crypto means are applied. In order to cope with the security
versus life time issue normally hardware for crypto means
is applied. But what happens after a couple of decades?
Due to ever increasing computational power the once ap-
plied key length is no longer sufficient. Updating an ASIC
is impossible, so the obvious solution is to use a key length
that is by far not necessary at the time of deployment. In this
paper we are investigating approaches that allow hardware
support of elliptic curves with different key length.

Our first approach is to include several dedicated reduc-
tion units into a sufficiently large multiplier. We call this
approach MHWR and present measurement results for two

designs one supporting the NIST curves [6] B-283, B-233
and B-163 and a second one supporting all recommended
named binary curves from B-163 to B-571. The MHWR ap-
proach has very good parameters, i.e. only 10% additional
area is needed and the performance is not negatively af-
fected. But, the flexibility is still limited. In our second ap-
proach, called FSR, we use a flexible reduction unit which
exploits the properties of commonly used elliptic curves.
This design allows full flexibility up to a predefined key
length. We realized such an accelerator for key length up
to 283 bit. The measurements show that it needs consider-
able more area than dedicated systems, but is still 500 times
faster and needs about 200 times less energy than compara-
ble software implementations.

The rest of this paper is structured as follows. First, we
provide an overview of the reduction operation in GF(2m)
and the flexibility issue. In section 3 we investigate flexible
approaches for the reduction. Here we present our flexi-
ble reduction unit. Implementations of flexible polynomial
multiplier and full ECC designs that apply the reduction
units are presented in section 4. There we also discuss our
measured results. A short summary concludes the paper.

2 Background

Finite field arithmetic is the fundamental backbone of
many approaches in cryptography and coding theory. Bi-
nary finite fields (GF(2m)) provide efficient algorithms and
implementations of the arithmetic operations. For example,
additions and subtractions in GF(2m) are very fast because
they can be implemented as simple XOR operations without

Figure 1: After a multiplication the result C has the double length. It must
be reduced to an element C’ with length m that is equivalent to C in the
finite field, i.e the overlapping part C1 must be zero.



carry propagation. This renders these fields very favorable
for cryptographic applications with long key lengths. Sev-
eral elliptic curves that are for example recommended for
ECC by the National Institute of Standards and Technology
(NIST) [6] use these binary fields. Most hardware accelera-
tors only support one field, i.e only one key length. We pro-
pose approaches that allow hardware implementations with
high performance that provide a higher degree of flexibility.
Flexibility means ability to compute different key lengths,
i.e. binary fields GF(2m) with different m.

The most important operation in GF(2m) is the polyno-
mial multiplication. Regarding flexibility the actual multi-
plication is not the biggest issue. For example, a 233 bit
multiplier can multiply 163 bit values, if not used bit po-
sitions are padded with zeros. After a multiplication the
product is too long for the finite field. The conversion to an
equivalent element in the borders of the finite field is called
reduction (see Fig. 1). Corresponding to classic finite fields
the reduction can be performed by a division with remain-
der, i.e. long product is divided by the irreducible polyno-
mial, which defines the finite field. But this modulo opera-
tion is too slow to be feasible. An alternative method is the
repeated multiplications reduction (RMR) [2, 4]. This ap-
proach repeatedly subtracts the product of the overlapping
part C1 (see Fig. 1) and the irreducible polynomial from C
until the overlapping bits are zero. It is the only reported ap-
proach for flexible hardware reduction for ECs in GF (2m)
that is not bound to specific irreducible polynomials. In [4]
every reduction is performed by repeated multiplications of
the irreducible and the overlapping part of the word. [2]
presents a combined approach that performs reduction in
specific named fields by hard wired reduction blocks, other
fields are reduced by the repeated multiplication method.

The hard wired reduction (HWR) is the state of the art
[2, 3]. It is very fast, very small, but it is tailored for exactly
one field. With the knowledge of the irreducible polyno-
mial it is possible to build a chain of XOR operations that
performs the reduction within one step as a direct mapping
from the long product to the m bit polynomial (see Fig. 2).
But such a chain is bound to one field size and one irre-
ducible polynomial. The slightest change results in a com-
pletely different XOR chain.

Figure 2: Reduction of a 465 bit word in GF (2233). Finally the reduced
C0′′ can be determined by a direct mapping.

Table 1: Area consumption of combinatorial reduction blocks. ’Single’
is the area for the single curve reduction. ’Combined’ is the area for a
reduction block that additionally can handle the smaller specific named
fields, i.e. 283 can reduce the 163, 233 and 283 bit field

Size Recommended Area [mm2]

[bit] irreducible[6] Single Combined

163 x163 + x7 + x6 + x3 + 1 0.045 0.045
233 x233 + x74 + 1 0.034 0.092
283 x283 + x12 + x7 + x5 + 1 0.076 0.179
409 x409 + x87 + 1 0.058 0.250
571 x571 + x10 + x5 + x2 + 1 0.159 0.439

Thus, the actual flexibility issue is the reduction opera-
tion that must be performed after every multiplication. It
is presumed that this operation cannot be supported flexible
without losing much performance.

3 Flexible Reduction Approaches

Hard wired reduction is very efficient but without any
flexibility regarding the key length. In contrast the state of
the art flexible hardware reduction approach, the repeated
multiplication reduction, requires much more clock cycles
per multiplication. In this section we describe two ap-
proaches that allow flexibility without a significant perfor-
mance loss.

3.1 Multiple hard-wired reduction

For a single curve the best solution is a hard wired re-
duction. The disadvantage of this approach is that it works
exclusively for one field. But since other approaches are
either very large or very slow, it is feasible to implement
more than one of these blocks and select the one for the
corresponding curve. In cases where the alternative curves
are known, this method could result in a fast and compet-
itive implementation. To examine this notion, we imple-
mented reduction blocks for the five pseudo random curves
in GF(2m) recommended by the NIST, where each reduc-
tion block contains all smaller polynomials. Thus, the block
of the 571-bit size includes reduction functionality for the
409, 283, 233 and 163 bit curves beside the 571 bit field.
Table 1 shows a comparison of the resulting area consump-
tion of the combined reduction blocks and the standalone
blocks. The area overhead for the selection within the re-
duction logic is about 15% compared to the simple accu-
mulation of the stand alone blocks. Initially we expected
that logic of reduction blocks could be reused and a combi-
nation would lessen the total required area - but such effects
could not be observed.

2



3.2 Flexible shift reduction (FSR)

Figure 2 depicts the construction diagram of the HWR
block. It is shows that the overlapping part is shifted and
XORed until it is zero. The shift operations are determined
by the set positions of the irreducible polynomial. The idea
of the flexible shift reduction (FSR) is to do the same for
flexible word length and flexible irreducible polynomial. A
general implementation of this idea would require up to m
iterations of up to m − 1 shifts, what would take too many
clock cycles to be feasible. However, commonly used irre-
ducible polynomials are not that general but have the fol-
lowing regularities:

• They are trinomials or pentanomials, i.e. with three or
five set positions. Thus, not more than five shifts are
needed per iteration.

• Since the second highest set position in the reduction
polynomial is less than the half of its degree, it can
be proved that only two successive multiplications are
required for a complete reduction.

Thus, the number of shifts can be limited. Another problem
is the addressing of the overlapping part. For GF(2233) the
overlapping part are bits 233 to 465, while for example for
the smaller field GF(2163) the overlapping part is bounded
by bits 163 and 325. The FSR approach solves the problem
by aligning smaller words to the middle of the hardware
design so that the overlapping part is always accessible at
the same position.

Figure 3 shows the FSR approach that realizes a reduc-
tion for irreducible polynomials having the described prop-
erties. It is a method that reduces data words up to a spec-
ified length for every irreducible polynomial as long as it
is a trinomial or pentanomial. The maximum length is de-
termined by the physical word size of the architecture (n).
Figure 3 a) shows the reduction process for a polynomial
of the full size, while Figure 3 b) of a smaller polynomial
with the bit size m, where m < n. The full size reduction
is quite obvious, since it is very similar to the basic idea of
the hard-wired reduction. The overlapping part is shifted
corresponding to the positions set in the reduction polyno-
mial and is subsequently XORed to the word. After the first
reduction step, more than the half of the overlapping part
is zero. The positions of the data word that are set to zero
are presented as shaded area in the picture. After the sec-
ond step, which repeats the operations of the first step, the
complete reduction process is completed. The scheme for
smaller polynomials is almost the same. The only differ-
ence is that shorter words must be aligned, so that the least
significant bit of the overlapping part has the same position
as it does for the largest polynomial supported by the re-
duction unit. It corresponds to shifting the input word by
(n − m) bits to the left. Thus, the initial word is padded

Figure 3: Scheme of a flexible reduction method. The left part a) shows
a full size reduction. The right part b) is a reduction for a smaller curve.
When the smaller polynomials are initially aligned so that the overlapping
part starts at the same position as long polynomials, the same reduction
logic can be used. The shaded parts represent zeros. The configuration of
the reduction is determined by the four shift values x1, x2, x3, x4.

with zeros at the left and the right end. After this operation,
the reduction process is like the process for the full word.
For example, consider a reduction block for the maxi-
mum polynomial size of 233 bit. In this block we want
to reduce a result of a multiplication within the recom-
mended 163 bit NIST field. The reduction polynomial is
x163 + x7 + x6 + x3 + 1. To align the input word it
is shifted to the left by the difference of field sizes, i.e.
(233-163=) 70 bits. This means that the shaded area of
the input word of Figure 3 b) represents 70 bits at the be-
ginning and 70 bits at the end. The four shifting values
are: x3 = 163 − 7 = 156, x2 = 163 − 6 = 157,
x1 = 163 − 3 = 160, x0 = 163 − 0 = 163. After the
reduction is completed, the result must be shifted back by
70 bits to obtain the usual right aligned data word.
After synthesizing the design, it becomes apparent that es-

pecially the shifters are connected with a crucial problem.
Flexible shifters with a size of hundreds of bits are very slow
and large. A design that corresponds to the idea of Figure
3 requires one left-shifter for the smaller input words, four
concurrent right-shifters for each of the two reduction steps,
and one right-shifter for the final alignment. Thus, ten large
flexible shift operations are required for one reduction.
One approach to minimize the number of shifts would be
the limitation of the irreducibles to trinomials. It decreases
the number of shift operation by four, but the elimination of
the pentanomials implies a significant loss of functionality.
An approach that avoids one of the four concurrent shifters
without losing functionality is shown in Figure 4. The term
that belongs to the x0-shift is not shifted but directly for-
warded to the final accumulation stage. It can be done be-
cause all irreducible polynomials have the structure: r(x) =
xm + ...+1, i.e. the terms xm and 1 are part of every reduc-
tion polynomial. In the original scheme (Fig. 3), the partial
product that corresponds to xm is not shifted, but the term

3



Figure 4: Scheme of the optimized flexible shift reduction method. The
input is shifted in the init step to obtain the middle alignment. Then the two
reduction steps are performed with three shift operations each (x1,x2,x3).
The fourth shift (x0) can be saved when it is forwarded to the final step and
accumulated after the final right shift.

that represents position 0 is shifted right by x0. Since x0 is
the difference of m and the lowest set bit, which is always 0
(x0 = 1), x0 is equivalent to m (m− 0).
In the final step of the reduction, the intermediate result,
which is still aligned to the middle, is shifted so that it is
aligned to the right. The amount of the bits for the final
right shift is: xf = n−m, whereby n is the physical word
length and m is the size of the calculated field.
Since the x0-terms have no impact on the intermediate over-
lapping part (c’1) it can be moved to the end. The two suc-
cessive shift operations that have to be executed at the end
(>> m and >> n−m) can be merged to one shift operation
(>> n). This n depends on the hardware design and not on
the calculated field. Therefore, this shift operation is not an
expensive flexible shift operation but a cheap readdressing.
With this improvement still eight shift operations for one
reduction are required.

We implemented the shifter applying a multiplexer chain
that shifts the input corresponding to the shift value consec-
utively by 1, 2, 4, ..., or 128. We could build and synthesize
such a design that performs the reduction within one clock
cycle. A 233 bit version of the reduction block requires
about 1.3mm2 in silicon in a 0.25µm CMOS technology
after synthesizing at a frequency of 70 MHz. This design
computes the polynomial reduction within one clock cycle
in every field up to a degree of 233 if the reduction polyno-
mial is a trinomial or pentanomial.
The large area and relatively low clock speeds caused by
the large shifters are the big disadvantages of this approach.
Further investigations could improve these parameters. The
presented design works for all field sizes up to a specified

Figure 5: Structure of the polynomial multiplication unit based on the IKM
approach [1]. Our preferred configuration requires 9 partial multiplication.
The reduction is integral part of the multiplier.

size. It even works for very small fields that have no prac-
tical use, e.g. GF (23). A minimum field size of, e.g. 150
bit would reduce the complexity of the shifter logic, since
several shift values are not required in such scenario. Exper-
iments with sequential applications of the reduction process
have shown that less silicon area and higher clock frequen-
cies can be achieved if the reduction may take more than
one clock cycle. However, in the following evaluation we
only consider the initial design with the combinatorial FSR
reduction.

4 Flexible ECC Designs

The flexible reduction units discussed in the previous
section shall now be applied in complete ECC hardware
designs that accelerate the elliptic curve point multiplica-
tion (ECPM). Beside the multiplication and reduction unit
these designs comprise an ALU with embedded addition
and squaring functionality, eight registers of word size n
and a control logic that in particular controls the access to
the system bus that transfers one data word per clock cycle.
Before discussing the complete ECC designs we introduce
the polynomial multiplication units, which are the most im-
portant functional units.

4.1 Polynomial Multiplication

All our multiplication units base on the iterative Karat-
suba multiplication (IKM) approach proposed in [1]. They
only differ in the word size and the reduction method, which
is integral part of the multiplication unit. Our preferred mul-
tiplier setup requires 9 clock cycles for a polynomial multi-
plication. In each cycle partial factors are determined in the
selection block, a partial multiplication is performed and
the result is accumulated. The final accumulation step com-
prises the reduction. For the flexible designs the reduction

4



Table 2: Overview of flexible multiplication units supporting several fields
in GF (2m).

ReductionSize contains fields: Area Speed

method [bit] 163 233 283 409 571 all upto [mm2] period[ns] cycles
233 X X - 0.67 10 9

MHWR 283 X X X - 0.94 11 9
409 X X X X - 1.54 12 9
571 X X X X X - 2.37 15 9
233 X X 233 1.72 20 9

FSR 255 X X 255 1.94 21 9
283 X X X 283 2.30 23 9

block is exchanged and additional inputs for the selection of
the field length and the irreducible are added. It is premised
that smaller polynomials are padded with zeros to meet the
full multiplication factor length.
Table 2 shows an overview of multipliers for different fields
applying the reduction methods as they were described in
the previous section. One can see that the MHWR approach
is very efficient. Both area and speed are barely affected by
the additional reduction functionality. Contradictory results
are observed for the FSR implementation. Both, area and
speed are negatively affected with the factor of 2.

4.2 Evaluation of flexible ECC designs

The polynomial multiplication units with embedded re-
duction blocks are the core of our ECC designs. For the
final evaluation of the impact of the flexible reduction ap-
proaches we implemented various ECC accelerators of dif-
ferent sizes and measured the effects on time, area, and en-
ergy. We realized two MHWR designs and one FSR im-
plementation. In addition we implemented a design with
the classic repeated multiplication reduction (RMR) as in-
troduced in section 2.
MHWR 283 This three fields design bases on a 283 bit
single curve design and includes the NIST curves B-163,
B-233, and B-283. The reduction units in multiplier and
the squarer have been replaced by an MHWR block for the
three addressed fields. The embedded IKM requires nine
clock cycles for a polynomial multiplication and has a fac-
tor size of 80 bit.
MHWR 571 Additionally to the 3 fields of MHWR
283 this design supports the fields B-409 and B-571. It
is an adapted 571 bit single curve design with embedded
160 bit core multiplier. A multiplication in GF (2409) and
GF (2571) requires nine clock cycles while multiplications
on smaller fields are three times faster, due to a better uti-
lization of the multiplier.
FSR 283 It is the same 283 bit ECC design as the MHWR
283, but with the 283 bit FSR logic embedded in multiplier
and squarer. Except additional registers for the configura-
tion of the reduction polynomial, the design is the same
as for a single curve design. The reduction polynomial is

Table 3: Comparison of parameters of the RMR, the FSR, two MHWR
ECC blocks, and corresponding single curve blocks.

ECPM Single MHWR MHWR FSR RMR
bit size curve 283 571 283 283

Period 163 9 11 16 23 16
[ns] 283 11 11 16 23 16

571 15 - 16 - -

163 9251 9251 7383 9251 23990
clk cycles 283 15922 15922 9215 15922 41900

571 32275 - 32275 - -

Time 163 83 102 118 212 384
[µs] 283 175 175 147 365 670

571 484 - 517 - -

Area 163 1.0 2.0 4.3 4.5 3.2
[mm2] 283 1.9 2.0 4.3 4.5 3.2

571 3.9 - 4.3 - -

Energy 163 12.8 25.8 23.2 81.6 78.4
[µWs] 283 43.5 50.6 48.1 148.1 147.5

571 191.7 - 248.8 - -

stored in four registers of a size of nine bits, which describe
set positions in the polynomial.
RMR 283 In this 283 bit ECC design the standard mul-
tiplier was extended by a logic that performs the repeated
multiplications. In order to achieve comparable results, we
chose a bigger and faster core multiplier that allows the ex-
ecution of a polynomial multiplication in three cycles. A
default nine-cycle multiplier would require three times the
time and merely 20% less area. The design does not contain
a particular squaring unit. For the storage of the reduction
polynomial a 283 bit register is required.

4.3 Comparision

The results for timing, area, and energy for the four flex-
ible designs, together with a comparison to the single curve
designs are shown in Table 3. The evaluation of these re-
sults indicates the following conclusions:
Area: The silicon area in both considered MHWR de-
signs is less than 10% larger than for the single curve de-
sign. Therefore, the additional cost for the support of spe-
cific smaller curves is acceptble.
The FSR design requires more than double the area than a
single curve design for the same word length. The RMR
design is about 30% smaller than the version with FSR, but
with 3.2mm2 it still requires much more area than the 283
bit single curve design, which needs only 1.9mm2.
Speed: The number of clock cycles required for an ECPM
by MHWR is equal to the corresponding single curve im-
plementation. An exception is the execution of small curves
on the large 571 bit design. Here, the efficient application
of the large internal multiplier reduces the number of clock
cycles. The maximum clock frequency is slightly below the
frequency for the single curve full size design. The FSR
approach does not need more clock cycles but the maxi-

5



Figure 6: Required time (on the left) and total energy for an ECPM on
B-163 and B-283. While FSR is much faster than RMR, the energy con-
sumption of both full flexible designs is on a same level but is at least the
threefold of the single curve and MHWR implementations.

mum clock frequency decreases significantly. For the im-
plemented configuration even 50 MHz is not possible. In
contrast RMR allows a faster frequency but suffers from the
huge number of clock cycles so that it finally requires dou-
ble the time of the FSR design. Figure 6 shows the com-
parison of the two full flexible designs, the 283 bit MHWR
supporting three curves, and the corresponding single curve
implementation. The FSR design, due to the slow clock,
requires roughly double the time of the single curve oper-
ation, but is about twice as fast as the RMR implementa-
tion. In contrast, MHWR with support for 3 curves is only
marginally slower than the 283 bit single curve design.
Energy: As expected the energy consumption increases
with larger word sizes and more flexibility. Smaller fields
are computed more energy efficient on MHWR571 than on
the smaller MHWR283. This is due to the improved utiliza-
tion of the bigger field multiplication unit.
Figure 6 compares the required energy for one ECPM for
the corresponding single curve and flexible design. Both
FSR and RMR require more than three times the energy
than the single curve design. For small 163 bit ECPM the
energy consumption is increased by the factor of five. The
improved execution time of FSR does not lead to an reduced
energy consumption.

5 Conclusion and Summary

Elliptic Curve Cryptography features such as key length
and calculation effort, make them a good choice for em-
bedded systems compared to RSA. But each curve has its
own irreducible polynomial and efficient hardware designs
usually exploit the properties of this polynomial. Thus, nor-
mally hardware accelerators can support only one dedicated
elliptic curve. In this paper we have introduced two ways to
provide flexible hardware support for elliptic curves. Our
first approach is quite straightforward, since we included
several dedicated reduction units into a polynomial multi-
plier. Even if this looks like a waste of area, our measure-
ments show that the area penalty is less than 10 per cent. In

addition the execution speed is not affected negatively. For
example the 283 bit single curve design synthesized for a
0.25µ CMOS technology has a size of 1.9mm2, the ECPM-
operation requires 175µs and 43.5µWs. A design that ad-
ditionally supports B-233 and B-163 curves has a size of
2.0mm2, and the 283 bit ECPM needs 175µs and 50.6µWs.

Our second approach is more sophisticated. Here we
use a reduction unit which adjusts polynomials that have
to be reduced in such a way that all polynomials up to a
certain length, i.e. the size of the reduction unit, can be re-
duced. The full flexibility has its costs. The silicon area for
the FSR approach is more than 2 times the area of a single
curve. Also time and energy consumption increase signifi-
cantly compared to the optimized single curve design. Here,
FSR is about 50% faster than traditional flexible reduction
methods as RMR. For our knowledge, the FSR based ECC
design is the fastet flexible ECC accelerator. In compari-
son to an examplary software implementation based on the
MIRACL[5] library and running on a MIPS R4000 33MHz,
also assembled in 0.25 µ CMOS technology, the benefits of
that design become even more apparent. Such a software
implementation provides full flexibility but, varying with
the field size, requires at least 200 times the time and 550
times the energy. For very small devices as wireless sensor
nodes that numbers become even more distinct.
These parameters qualify our flexible designs as well suited
solutions for mobile and embedded designs that demand not
only good performance but low energy consumption.

Acknowledgment

This work was partially funded by the German Ministry
of Education and Research under grant 01AK060B and in
part by EU under contract 26820.

References

[1] Z. Dyka and P. Langendoerfer. Area efficient hardware im-
plementation of elliptic curve cryptography by iteratively ap-
plying karatsuba’s method. In DATE, pages 70–75, 2005.

[2] H. Eberle, N. Gura, and S. C. Shantz. A cryptograhpic pro-
cessor for arbitrary elliptic curves over. In ASAP, 2003.

[3] N. A. Saqib, F. Rodrı́guez-Henrı́quez, and A. Dı́az-Pérez.
A parallel architecture for fast computation of elliptic curve
scalar multiplication over GF (2m). In IPDPS, 2004.

[4] A. Satoh and K. Takano. A scalable dual-field elliptic curve
cryptographic processor. IEEE Trans. Comput., 52(4):449–
460, 2003.

[5] M. Scott. MIRACL—A Multiprecision Integer and Rational
Arithmetic C/C++ Library, Version 5.0. Shamus Software
Ltd, Dublin, Ireland, 2005.

[6] F. U.S. Department of Commerce/NIST. Digital Signature
Standard (DSS), FIPS PUB 186-2, Jan. 27, 2000.

6


