
Implementation Analysis of the IEEE 802.15.4 MAC

for Wireless Sensor Networks

Thomas Basmer, Henry Schomann, Steffen Peter
IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany

Email: {basmer, schomann, peter}@ihp-microelectronics.com

Abstract—IEEE 802.15.4 is the dominant Medium Access Control
protocol in wireless sensor networks. To implement this protocol on

such severely resource constraint devices, several trade-offs have to be

considered. This paper presents an analysis of IEEE 802.15.4 software

implementations available for typical sensor node systems, such as the
MSP430 from Texas Instruments. We discuss the available implemen-

tations concerning the supported features, flexibility issues and the

efficiency of the implementations. The latter is based on a static code
analysis that allows to measure and compare the number of clock

cycles, needed to execute specific MAC functionalities. The result of the

study is that the performance of the implementations does not correlate

with the number of supported features but rather inversely with the
implementation flexibility. The results do not only support integrators

of 802.15.4-based networks but help identifying key aspects of future

implementations of the protocol.

I. INTRODUCTION

Wireless sensor networks (WSN) consist of resource constraint

devices - nodes- which typically send data measured by sensors

attached to the nodes towards a sink. These networks find applica-

tion, for instance, in ubiquitous environmental monitoring, medical

surveillance, and industrial automation systems. Typically the nodes

are small, battery-powered, have limited computation capabilities and

a small amount of memory. This is why reduction of computation

efforts and memory consumption is a primary goal when integrating

such systems. This is particularly true for the wireless network

protocols, since sending and receiving data is an integral task of the

nodes.

The most often used Medium Access Control (MAC) protocol used

in WSNs is the standard IEEE 802.15.4 [1]. The MAC controls

the access to shared communication medium in networks, which in

WSNs is the air. The MAC has to guarantee a fair access distribution

and collision free data transfer for all participants of the network. This

is a complex task with severe timing constraints. Implementations of

the protocol trade off these requirements with functional or flexibility

limitations.

To evaluate the trade-offs, in this paper we analyze IEEE 802.15.4

software implementations available for the Texas Instruments

MSP430 microcontroller [2], which is widely used as processing unit

in WSNs, e.g. Tmote Sky [3], TinyNode [4], IHPNode [5]. We discuss

available MAC implementations concerning the supported features

defined in the standard and the efficiency of the implementations.

The latter is based on a static code analysis. As part of this analysis

we measure and compare the microcontroller clock cycles, needed to

execute specific MAC functionalities.

This paper is structured as follows: After a brief introduction of

the IEEE 802.15.4 standard and the MSP430 microcontroller, we

present the related work done on analyzing this MAC protocol. This

is followed by a presentation of available software implementations of

the standard. Section III. presents our analysis approach. The results

of the analysis are presented and discussed in Section IV. The paper

closes with an outlook and the conclusion.

TABLE I
MAIN FEATURES OF IEEE 802.15.4 SEPARATED INTO FULL FUNCTION

DEVICES (FFD) AND REDUCED FUNCTION DEVICES (RFD). THE

FEATURES ARE CLASSIFIED AS MANDATORY(M) OR OPTIONAL(O).

Feature FFD RFD

Transmit/receive data packets m m
Activate/deactivate radio transceiver m m
Energy detection within the current channel m o
Link quality indication m m
Channel selection and clear channel assessment(CCA) m m
Beacon management and beacon reception m m
Beacon sending m o
Guaranteed time slot management o o
CRC16 m m
Acknowledgment frame delivery m m
Association and disassociation m m
Security m m
Beacon Request m o
Orphan scan m o
Listening for beacons m m

A. IEEE 802.15.4

In this section we describe properties of the IEEE 802.15.4

MAC protocol standard. The properties are important to understand

differences in the implementations compared later in this paper. The

standard IEEE 802.15.4 was designed to cope with the requirements

of low-rate Wireless Personal Area Networks (LR-WPAN). Therefore

it should guarantee a reliable access to the wireless medium in

applications with low duty cycles, low data rates (< 250kiB/s)

and a limited amount of energy. IEEE 802.15.4 supports star as

well as peer-to-peer network topologies. Due to this flexibility with

reasonable footprint, it became the de-facto standard used in the field

of wireless sensor networks.

Another benefit is the separation of full function devices (FFD) and

reduced function devices (RFD) which can work together in the

same network. A full function device is used as network coordinator,

cluster head or normal device. It provides extensive features to

control and supervise its cluster or the whole network. The RFDs

are used as simple network nodes, e.g. to collect data. They can only

communicate over their assigned coordinator.

Features of the devices are divided into mandatory ones, which must

be implemented and optional ones, which could be implemented to

be compliant to the standard. Naturally, the set of supported functions

influences the complexity of the implementation as we will see later

in this paper. The mandatory and optional features of both device

types (FFD and RFD) are listed in Table I. This overview gives an

impression on the scope of the standard and is used to discover the

range of the different software implementations.

2011 International Conference on Selected Topics in Mobile and Wireless Networking (iCOST)

978-1-4244-7742-5/11/$26.00 ©2011 IEEE 7

B. MSP430

As mentioned above our work is focused on MSP430 microcon-

troller systems. This is caused by the fact that this microcontroller

family is well suited for low power systems and widely used in

the field of wireless sensor network devices. The MSP430 is a 16

bit reduced instruction set cycle (RISC) system in von Neumann

architecture (i.e. one address space used for program code and data).

Its address bus supports a width of 16 or 20 bit, depending on

the configuration. The 20-bit configuration (called x-architecture) is

applied in the TIMAC implementation, which is introduced later in

this paper.

The instruction set contains 27 core instructions and several emulated

instructions. A core instructions used on registers only needs one

clock cycle for execution. Emulation combines different core instruc-

tions to an emulated one, which reduces the code size but needs more

time. Generally, there are three different instructions types available:

single operand instructions, double operand instructions and jump

instructions. The needed clock cycles per instruction depends on

the type and the addressing mode for source and destination of the

instruction.

C. Related Work

Related work in the context of the analysis of light-weight

implementations of IEEE 802.15.4 is relatively scarce. There are

some evaluations of IEEE 802.15.4 implementations with focus on

network performance [6], [7], [8], [9], [10], [11], [12], e.g., reliability,

throughput or separate parts of the standard, e.g., AES, CRC or auto-

acknowledgment. The implementations themselves are not evaluated.

Work on profiling tools for software for microcontrollers has also

been rarely published. In [13] existing profiling tools like msp430-

gprof, OProfile and Vtune are evaluated. In this work a good overview

about software profiling issues and requirements is given. Those

tools are developed for profiling high end processors and not usable

on microcontroller devices. This result of the survey motivated the

author to implement the novel tool msp430-eprof for the MSP430

microcontroller family, which, however, is currently not publicly

available.

II. IEEE 802.15.4 SOFTWARE IMPLEMENTATIONS

In this section the five different software implementations currently

available for the MSP430 microcontroller are introduced. The im-

plementations are TKN15.4, open-ZB, TIMAC, IHP MAC SDL, and

IHP MAC cb.

A. TKN15.4

The TKN15.4 implementation has been developed at the Technical

University of Berlin [14]. It is component-based and platform-

independent, which allows reusability in many systems.

The software is written in nesC to be used with the operating

system for wireless sensor nodes TinyOS [15]. The current version

is implemented with focus on the TMote sky sensor node (one

of the first commercial available sensor node) [3]. The required

software components can be configured at compile time. To fulfill

the timing constraints several functions had to be shifted from the

software MAC layer to the hardware PHY layer of the TMote sky

and its CC2420 radio module [16]. For example the CSMA/CA

procedure, the acknowledgment procedure and the CRC16 calculation

are performed in the radio front-end. This improves the performance

but leads to increased hardware dependencies.

Functions that are still missing in this implementation are the Guaran-

teed Time Slot (GTS) functionality and the security options. Notable

Fig. 1. Software architecture of the TKN15.4 implementation

is that TKN15.4 assigns the role of the device (FFD or RFD) at

runtime as part of the software. This improves the flexibility since

the role of the device can be changed during its lifetime. However,

it also requires the software to contain all functionality even if it is

not needed. This may be disadvantage in very memory constrained

devices such as sensor nodes.

From implementation view, the TKN15.4 software can be divided

into five parts (see Figure 1). The first part (TinyOS) contains the

operating system dependencies. It has interfaces to all other parts. The

upper part (MAC) contains the functionalities of the IEEE 802.15.4

standard. It has an interface to the network layer above and to the

physical layer (PHY) and special function layer (Sp.Func) below.

These two layers provide a hardware abstraction, which allows the

MAC operate without knowledge of the underlying hardware. For a

new hardware platform only this hardware abstraction layer (HAL)

has to be adjusted.

The PHY component provides interfaces to the physical layer func-

tionality of the radio device. Functions like auto-acknowledgment and

hardware CRC are accessed via the special function component. As

mentioned above, these special functions are applied to improve the

performance and to save execution time and energy.

B. open-ZB

The open-ZB IEEE 802.15.4 MAC implementation has been de-

veloped at the Polytechnic Institute of Porto [17]. As TKN15.4 it

is written in nesC for TinyOS. The software implements nearly

the full standard except extended address field names and security

functionalities. open-ZB is available for MICAZ [18] and Tmote sky

sensor node. Contrary to TKN15.4, the scope of open-ZB is limited to

clients, which means that devices with the role as network coordinator

are not supported.

The open-ZB implementation can be divided into four parts: the MAC

implementation containing all main functionalities, the physical layer

part containing the general functions to access the hardware, the

drivers and the operating system part (see figure 2). The TinyOS block

applies internal functionalities of the operating system and provides

interfaces to the three other parts. The MAC has interfaces to the

network layer above and the physical layer below. It contains the

main functionalities of the implementation. The HAL is implemented

within the physical layer part. It provides an abstract interface to the

MAC part.The physical layer uses the hardware dependent drivers. To

adapt open-ZB to other platforms, TinyOS and the hardware drivers

must be available for this hardware. The physical layer part must also

be adapted to the new drivers.

C. TIMAC

The TIMAC [19], [20] implementation is offered by Texas Instru-

ments for use with MSP430 microcontrollers in x-architectures and

Chipcon radio modules like the CC2420. It can be found at [21].

Additionally to the 20-bit address bus, the MSP430 x-architecture

also provides additional instructions like pushm. Using the pushm

8

Fig. 2. Software architecture of the open-ZB implementation

instruction, it is possible to push more then one register onto stack

using a single command. The instruction saves two clock cycles

per register push compared to the original push instruction. The

implementation is certified to be compliant to the IEEE 802.15.4

standard. Unfortunately it was not possible to analyze this software

because it is only available as compiled library. Also, no detailed

information of the internal software structure is available. The source

code can be bought from Texas Instruments for 10.000$. Due to

the background of the TI as manufacturer of the chipsets it can be

assumed that the implementation is very efficient but comes with a

lack of portability. However, we could not evaluate this assumption.

D. IHP MAC SDL

This software is implemented at IHP for use on Tmote sky

sensor nodes. The implementation is derived from a Specification

and Description Language (SDL) model of the IEEE 802.15.4. The

generated code is ported to the Reflex [22] operating system. The

implementation is event-driven. This allows to divide the MAC

into several functional tasks which are activated by events, e.g.,

interrupts. The implementation consists of the beacon-enabled and

non-beacon mode. Security services and GTS management have not

been implemented yet.

The IHP MAC SDL implementation comprises five parts (see figure

3). The Upper MAC provides an interface to the network layer above

and the core MAC implementation, containing the main functional-

ities, below. Below the MAC part the Transport Engine is located.

It represents the hardware abstraction layer of the implementation,

providing an interface to the hardware drivers. The Reflex operating

system has interfaces to all parts of the implementation. To adapt

the implementation to other platforms Reflex and the drivers must be

available for that hardware. Additionally the Transport Engine must

be adapted to the new hardware drivers.

E. IHP MAC cb

The IHP MAC cb implementation of the IEEE 802.15.4 has also

been developed at IHP. It claims to be as hardware and operating sys-

tem independent as possible. It is a component-based (cb) implemen-

tation in C++ programming language. The different functionalities are

encapsulated into different components with well-defined interfaces.

The component-based design needs only changes in few components

to adjust the implementation to new hardware or operating systems. It

is possible to configure the MAC functionalities to the requirements

of the implementation. Software-only blocks can easily be replaced

by blocks using hardware accelerators. The implementation consists

of all mandatory functionalities of the standard. From the discussed

implementations it is the only one executing the CRC checksum

calculation in software, which increases the portability. Security

Fig. 3. Software architecture of the IHP MAC SDL implementation

Fig. 4. Software architecture of the IHP MAC cb implementation

options and beacon-enabled mode are not implemented, yet. Like

open-ZB the software only addresses network clients. Setup of a

network coordinator is not supported. The implementation uses the

same architecture as open-ZB but it uses the Reflex operating system

instead of TinyOS (see figure 4). The physical layer part (PHY)

represents the HAL providing an abstract interface to the underlying

drivers for the hardware components. To use this implementation on

other platforms the drivers and the operating system Reflex must be

available for this hardware. Also the PHY part must be adapted to

the new drivers.

F. Summary

This section introduced the properties of five implementations

IEEE 802.15.4 for the MSP430. We presented the functional range

of these implementations and summarized it in a Table for a better

comparison.

One important distinction between the implementations is the amount

of functionality realized in software and hardware. Each implementa-

tion has a slightly different focus on what has to be done in software

and what has to be done in hardware. Table II gives a short overview

on this.

It must also be noticed, that none of the five implementations provides

a complete implementation of the standard. The standard is very

complex (more than 600 pages) and lavish functions like security

are not implemented yet.

In the next section the properties of the implementations are analyzed

in detail.

9

TABLE II
IEEE 802.15.4 FUNCTIONS IN THE IMPLEMENTATIONS (HW: HARDWARE,

SW: SOFTWARE IMPLEMENTATION, N.I. NOT IMPLEMENTED).

Function T
K

N
1
5
.4

o
p
en

-Z
B

T
IM

A
C

IH
P

M
A

C
S

D
L

IH
P

M
A

C
cb

Frame construction SW SW SW SW SW
Security n.i. n.i. n.i. n.i. n.i.
CRC16 HW HW HW HW HW/SW
GTS n.i. SW n.i SW n.i.
Beacon mode SW SW SW SW n.i.
Channel scan
Beacon request SW SW SW SW n.i.
Listening for beacons SW SW SW SW n.i.
CSMA/CA
slotted HW SW n.i.
unslotted HW SW SW SW
Acknowledgment HW HW HW HW SW
Address filtering HW SW SW HW/SW

III. OUR ANALYSIS APPROACH

In this paper we want to analyze the runtime of several IEEE

802.15.4 functions in different implementations for the MSP430

microcontroller. In this section typical approaches to measure the im-

plementation properties are briefly discussed. This section concludes

with a presentation of our applied analysis flow

To analyze the implementation parameters generally, there are four

options to measure the runtime:

• Time Stamp Counter Register

In high-end processors , such as the Intel Pentium 4 or AMD

K8, a special counter register, incrementing with every clock

cycle, is available to generate time stamps. That could be used

for such purpose. In microcontrollers like MSP430 such register

is absent.

• Microcontroller Internal Timer

In general a microcontroller comes with at least one internal

timer component. These timers can also be used to measure

runtime. But in most cases they are used by the application

it self and they are not usable for profiling. Further, it is not

possible to run internal timers with the real system clock and

the resolution is not sufficient for clock cycle count.

• Simulator

Simulators could also be a good choice for runtime measure-

ments. We had a look at a simulator for the MSP430 micro-

controller family. It provides more capabilities to get additional

information about the system and the running software. The

inspected simulator for this microcontroller family is MSPsim

from SICS [23]. This Java based tool simulates on instruction

level but not clock cycle accurate. It also does not implement

the behavior of all MSP430 instructions.

• Profiling Tools

The usage of profiling tools included in IDEs for the software

development, e.g. Code Composer Studio (Texas Instruments)

and the IAR Workbench, can also be feasible way to analyze

software runtime. The work of [13] deals also with software

profiling on microcontroller systems and examines several other

profiling tools. Those tools are developed for profiling high end

processors and so the author develops its own profiling tool

called msp430-eprof that is currently not publicly available.

Unfortunately the first three approaches cannot be applied for our

analysis. The time stamp counter register cannot be applied because

it is absent in the MSP430. The internal timers of the microcontroller

can not be used for analysis because typically they are used for the

application itself and changes to the software must be done. More

promising are simulators. The MSPsim, however, is not clock cycle

accurate and it does not support the full instructions set. The fourth

approach, using profiling tools is the most promising one. However,

with those tool we encounter several problems:

• strong dependencies of the software to the operating systems

• strong dependencies of the operating systems to special compil-

ers

• Code Composer Studio does not support a good clock cycle

profiling

• Reflex is based on C++, but IAR does only support embedded

C++ for MSP430 microcontrollers

As answer to these issues we applied a novel analysis flow: As

first step the MAC implementation is compiled and an assembler

listing is generated. This listing is loaded into our tool as a second

step. It calculates the clock cycles needed for every instruction line

and sums the values for the different subroutines. After this we

identify the position of the different MAC functionalities and which

subroutines are involved to calculate its runtime. This method may

become exhaustive especially if the code is not well structured. Thus,

such a manual flow actually requires significant time. To accelerate

the flow we wrote a simple script-based profiling tool for the static

code analysis. This tool is not subject of this paper.

We focused our analysis on the main IEEE 802.15.4 functions and did

the examination on all five implementations presented above, except

TIMAC because no sources are available. The results of that analysis

are presented in the next section.

IV. ANALYSIS RESULTS

The results of our examination are summarized in Table 3. As

discussed before, TIMAC could not be analyzed, due to the absence

of the sources. For the other four implementations we analyzed the

different implementations of important MAC functions:

A. Analysis

1) Channel Scan: The first examined function is the active chan-

nels scan. It is used in the beacon-enabled mode to scan for a network

coordinator. Therefore, the device broadcasts a request command that

triggers the coordinator to send a beacon the device can scan for.

There is also a passive scan available, in which the device scans for

beacons without sending a request. In TKN15.4 the active scan takes

719 clock cycles and in open-ZB 1052 clock cycles. IHP MAC SDL

needs 2593 cycles, caused by the extensive use of procedure calls

(worst case: 5 clock cycles for call instruction + 16 [registers] *

(4 clock cycles for register push + 3 clock cycles for register pop

instruction)) and buffers. The platform-independent IHP MAC cb

implementation does not support active scans.

2) Association Request and Response: The next functionality is

the association that is separated into request and response. The request

is a special data frame that must be generated and sent by every node

that wants to participate in a network. The response is sent by the

coordinator to confirm the association of the requesting node. The

effort for an association request lies in the range of 486 to 790 cycles.

Only the IHP MAC SDL implementation needs 1630 clock cycles,

caused by expensive procedure calls.

10

TABLE III
RUNTIME OF DIFFERENT MAC OPERATIONS IN CLOCK CYCLES (N.I.
MEANS NOT IMPLEMENTED, HW MEANS REALIZED IN HARDWARE).

Function T
K

N
1
5
.4

o
p
en

-Z
B

IH
P

M
A

C
S

D
L

IH
P

M
A

C
cb

Beacon request 719 1052 2593 n.i.
Orphan scan
Association
request 763 486 1630 731
response 790 n.i. 1527 n.i.
Create/send 127 byte package 809 971 1520 2561

Receive/analyze 127 byte package 240 1425 962 2676
Build acknowledgment frame HW HW HW 161
Synchronization 520 1052 2641 n.i.
CRC16 HW HW HW 2060

3) Package Sending: Clearly, sending and receiving are the most

used MAC functions in a sensor network. We examined the sending

effort for the maximum package length of 127 byte. In this task

the package header must be generated and the data bytes as well

as the checksum have to be appended. After this the package is

handed over to the physical layer. The package generation and hand

over takes between 809 clock cycles in TKN15.4 and 971 clock

cycles in open-ZB. The IHP MAC SDL implementation consumes

1520 clock cycles, mainly caused by the reasons mentioned before.

The package generation and sending procedure contains 21 procedure

calls, in contrast TKN15.4 needs 6 procedure calls. The IHP MAC cb

implementation requires significantly more time with 2561 clock

cycles, mainly due to checksum calculation implemented in software

which alone consumes 2060 clock cycles.

4) Package Reception: For reception of a 127 byte package it

must be analyzed and the payload must be passed to the network

layer. Analysis contains checksum calculation and verification and

header extraction. It consumes 240 clock cycles for TKN15.4 and 962

clock cycles for IHP MAC SDL. IHP MAC cb needs 2676 clock

cycles because of its software implemented checksum calculation.

The open-ZB needs 1425 clock cycles to analyze a received package

and forward it to the layer above. During this process the package

date is exhaustively copied, regardless if it is necessary or not.

5) Package Reception Acknowledgment: In some application it is

necessary to acknowledge the reception of a package to the sender.

The period to acknowledge the reception of a package is limited to

192µs in the standard. Within this time the package must be analyzed,

filtered and an acknowledgment frame must be built. To reach this

timing the acknowledgment is performed by every implementation

using hardware accelerators in the connected radio modules on the

platforms. The amount of clock cycles needed for the hardware

acknowledgment is not presented in the datasheets of the radio

modules. Only IHP MAC cb realizes this functionality in software

to guarantee its hardware independence. It takes 161 clock cycles

to generate an acknowledgment frame. On a sensor node platform

running with a 1 MHz clock this takes 161µs, hence a software only

acknowledgment is not possible.

6) Synchronization: For low duty cycle application with long

periods of inactivities between the data transfers, the communication

link can run out of synchronization, caused by the clock drift of the

low-cost oscillators used on the sensor network devices. Therefore

a resynchronization procedure is needed. Synchronization needs 520

TABLE IV
MAIN FEATURES OF THE IEEE 802.15.4 AND IF THEY ARE REALIZED (3)

OR NOT (m) IN THE DIFFERENT SOFTWARE IMPLEMENTATIONS

Feature T
K

N
1
5
.4

o
p
en

-Z
B

T
IM

A
C

IH
P

M
A

C
S

D
L

IH
P

M
A

C
cb

Transmit/receive data packets 3 3 3 3 3

Activate/deactivate radio transceiver 3 m 3 m 3

Energy detection within the current channel 3 3 3 3 3

Link quality indication 3 3 3 m m

Channel selection and CCA 3 3 3 3 3

Beacon management and beacon reception 3 3 3 3 m

Beacon sending 3 3 3 3 m

Guaranteed time slot management m 3 m 3 m

CRC16 3 3 3 3 3

Acknowledgment frame delivery 3 3 3 3 3

Association and disassociation 3 3 3 3 3

Security m m m m m

Beacon request 3 m 3 3 m

Orphan scan 3 3 3 m m

Listening for beacons 3 3 3 m m

clock cycles in TKN15.4 and 1052 in open-ZB. In the IHP MAC SDL

implementation it takes 2641 clock cycles. The synchronization is

here realized using an active scan. In IHP MAC cb synchronization

is not implemented yet.

B. Conclusion of the Analysis Results

The measured results described above are summarized in Table

III and Table IV. Table III shows the consumed clock cycles for

the different MAC functions for the IEEE 802.15.4 implementations

except TIMAC. Table IV shows the presence of the mandatory and

optional features, which were initially introduced in Table I.

1) TKN15.4: TKN15.4 is the most efficient implementation in

case of runtime. It comes with the shortest runtime except in the

association request. It can switch its role (coordinator or client) at

runtime. Therefore a lot of additional code must be compiled and

stored in the small microcontroller memory. To the best of our

knowledge TKN15.4 has not been certified if it is compliant to the

IEEE 802.15.4 standard. If we compare the entries of Table I to the

TKN15.4 column of Table IV it can be seen, that TKN15.4 fulfills all

mandatory and optional features needed for FFD and RFD devices.

So it seems the software is theoretically compliant to the standard

and can be used for FFD and RFD. The Checksum calculation,

acknowledgment, CSMA/CA and address filtering are shifted into the

radio module. That speeds up their execution but makes this software

more dependent on the underlying hardware.

2) open-ZB: The open-ZB implementation only addresses network

clients. This reduces its functional range and complexity. It has

already passed compliant test to guarantee it is IEEE 802.15.4

standard conform. It is the fastest implementation of the associa-

tion request. The software also uses the underlying hardware for

checksum calculation and acknowledgment to speed up this time

critical functions. This leads to more hardware dependencies. The

comparison of the standard its features and the implemented features

in open-ZB shows that it not fully implements all RFD and FFD

features. For RFD the activation and deactivation of the radio module

is missing. For FFD also the active scanning (beacon request) has to

be implemented.

11

3) TIMAC: The analysis of the TIMAC implementation is focused

on its functional description. It has also passed compliant tests to

guarantee its IEEE 802.15.4 conformity. If we compare Table I with

the TIMAC column of IV it can be seen, that TIMAC also fulfills the

mandatory and optional features for FFD and FFD.

4) IHP MAC SDL: IHP MAC SDL needs significantly more

time than the other hardware-accelerated implementations. For syn-

chronization it needs five time more clock cycles then TKN15.4. The

implementation language SDL, which is a very fast way to imple-

ment protocols graphically, generates code that uses many expensive

subroutine calls. That increases the load on the microcontroller since

it has to store and restore the registers content for the additional

task switches. The checksum calculation and acknowledgment are

using the hardware of the platforms radio module. This improves the

execution time at the expense of hardware dependence.

The comparison of Table I and Table IV shows that this imple-

mentation does not fulfill the features for FFD and RFD. To fulfill

RFD requirements the activation and deactivation of the radio, the

link quality indication, security and listening for beacons must be

implemented. For FFD further the orphan scan is needed.

5) IHP MAC cb: This platform-independent implementation only

addresses network clients. That reduces the complexity and range

of the implementation. As the only implementation IHP MAC cb

realizes all functions in software to be really hardware independent.

However, the modular architecture allows to adopt the software

to use the hardware accelerators in the future. This is required

for the acknowledgment because in software the timing constraints

could not be met. If we compare Table I to the corresponding

column in Table IV it can be seen that the implementation does

not fulfill the requirements for FFD or RFD. The forwarding of link

quality indication to higher layers, all the beacon functionality either

scanning for beacons still has to be implemented.

V. CONCLUSION AND FUTURE WORK

In this paper we presented an overview on existing IEEE 802.15.4

Medium Access Control implementations for the MSP430 micro-

controller family. Therefore, we performed a static code analysis to

assess the software runtime of the different MAC implementations.

This analysis determines the number of clock cycles required for

specific operations of the MAC protocol. This measure, which is a

good indication for the actual energy consumption of sensor node

devices, was also applied in the trade-off analysis in which we

compared the implementation flexibility and the supported features of

implementations. It turned out that, while no implementation supports

all features, at least TIMAC and open-ZB are proved to be compliant

to the standard. Nevertheless, security functions have not been

integrated in any of the implementation. While the run time of some

functions of the implementation varies by factor of up to five, we

could not identify speed advantages of implementations with reduced

feature set. The performance rather correlates with the number of

functions supported by hardware. The hardware dependencies as we

see them in TIMAC and TKN15.4 reduce the portability but deliver

good performance, while the IHP MAC cb, which is all software,

needs the most clock cycles for the operations.

In future this examination result can be basis for directed optimiza-

tions of available implementations of the standard IEEE 802.15.4.

It appears hardware accelerators are necessary to cope with the

identified performance bottlenecks. However, such accelerator func-

tions may be integrated into the microcontroller or as part of a

system on chip, rather than be unloaded to a fixed radio. Such an

implementation could be easily adapted to achieve an efficient IEEE

802.15.4 compliant hardware/ software co-design. Another future

activity is the extension of our profiling tool chain to support other

microcontroller architectures. It will extend the presented analysis to

other platforms.

REFERENCES

[1] IEEE Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-

works (WPANs), IEEE Std., Rev. IEEE Std 802.15.4-2006 and IEEE Std
802.15.4-2007a, 2007.

[2] CMSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL MICRO-
CONTROLLER, Texas Instruments, 2009.

[3] Moteiv Corporation, “Tmote Sky Ultra low power IEEE 802.15.4 com-
pliant wireless sensor module http://www.sentilla.com/pdf/eol/tmote-
sky-datasheet.pdf,” 2006.

[4] H. Dubois-Ferrière, L. Fabre, R. Meier, and P. Metrailler, “Tinynode:
a comprehensive platform for wireless sensor network applications,” in
IPSN ’06: Proceedings of the 5th international conference on Informa-
tion processing in sensor networks, 2006.

[5] K. Piotrowski, A. Sojka, and P. Langendoerfer, “Body area network for
first responders-a case study,” in Proceedings of the Fifth International

Conference on Body Area Networks, ser. BodyNets ’10. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2010.

[6] IEEE, Ed., Performance Evaluation of the IEEE 802.15.4 MAC for
Low-Rate Low-Power Wireless Networks. Los Angeles: Department
of Electrical Engineering, University of Southern California, 2004.

[7] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene,
“Energy Efficiency of the IEEE 802.15.4 Standard in DenseWireless-
Microsensor Networks: Modeling and Improvement Perspectives,” in
Proceedings of the Design, Automation and Test in Europe Conference

and Exhibition, IEEE, Ed., 2005.
[8] M. Petrova, J. Riihijärvi, P. Mähönen, and S. Labella, “Performance

Study of IEEE 802.15.4 Using Measurements and Simulations,” in
WCNC 2006 proceedings, IEEE, Ed., 2006.

[9] F. Vater and P. Langendörfer, “An Area Efficient Realisation of AES
for Wireless Devices,” Information Technology 03/2007, pp. 188–193,
2007.

[10] W. I. C. 6th International Conference, WWIC 2008, Ed., An Encryption-
Enabled Network Protocol Accelerator, ser. LNCS5031, vol. 6.
Springer, 2008.

[11] E. Lenchak, “CRC Implementation With MSP430,” Texas Instruments,
Application Report, 2004.

[12] J. Flora and P. Bonnet, “Never Mind the Standard Here is the TinyOS
802.15.4 Stack,” University of Copenhagen, Technical Report 06/10,
2006.

[13] R. Hildebrandt, “Softwaremethoden zur Senkung der Verlustenergie
in Microcontrollersystemen,” Ph.D. dissertation, Technische Universitat
Dresden, July 2007.

[14] J. H. Hauer, “TKN15.4: An IEEE 802.15.4MAC Implementation for
TinyOS 2,” Telecommunication Networks Group, Technical University
Berlin, Technical Report TKN-08-003, 2009.

[15] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos:
An operating system for sensor networks,” 2005. [Online]. Available:
http://dx.doi.org/10.1007/3-540-27139-2 7

[16] Chipcon AS SmartRF CC2420 Preliminary Datasheet, Chipcon, 2004.
[17] A. Cunha, M. Alves, and A. Kouba, “An IEEE 802.15.4 protocol

implementation (in nesC/TinyOS): Reference Guide v1.2,” Polytechnic
Institute of Porto (ISEP-IPP), Porto, Technical Report 1.2, 2007.

[18] MicaZ WIRELESS MEASUREMENT SYSTEM, crossbow, 2004.
[19] “802.15.4 MAC Application Programming Interface,” Texas Instruments,

Tech. Rep., 2009.
[20] “MAC Sample Application Software Design,” Texas Instruments, Tech.

Rep., 2007.
[21] [Online]. Available: http://focus.ti.com/docs/toolsw/folders/print/timac.

html
[22] K. Walther and A. Sieber, “The Reflex Whitepaper,” Lehrstuhl Verteilte

Systeme / Betriebssysteme BTU Cottbus, Tech. Rep., 2010.
[23] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt, “MSPsim

an Extensible Simulator for MSP430-equipped Sensor Boards.”

12

